Article contents
Mass-conserving solutions to the Smoluchowski coagulation equation with singular kernel
Published online by Cambridge University Press: 19 February 2019
Abstract
Global weak solutions to the continuous Smoluchowski coagulation equation (SCE) are constructed for coagulation kernels featuring an algebraic singularity for small volumes and growing linearly for large volumes, thereby extending previous results obtained in Norris (1999) and Cueto Camejo & Warnecke (2015). In particular, linear growth at infinity of the coagulation kernel is included and the initial condition may have an infinite second moment. Furthermore, all weak solutions (in a suitable sense) including the ones constructed herein are shown to be mass-conserving, a property which was proved in Norris (1999) under stronger assumptions. The existence proof relies on a weak compactness method in L1 and a by-product of the analysis is that both conservative and non-conservative approximations to the SCE lead to weak solutions which are then mass-conserving.
- Type
- Research Article
- Information
- Proceedings of the Royal Society of Edinburgh Section A: Mathematics , Volume 150 , Issue 4 , August 2020 , pp. 1805 - 1825
- Copyright
- Copyright © Royal Society of Edinburgh 2019
References
- 7
- Cited by