Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-28T10:00:15.217Z Has data issue: false hasContentIssue false

Measure-valued solutions for models of ferroelectric materials

Published online by Cambridge University Press:  03 October 2014

Nataliya Kraynyukova
Affiliation:
Fachbereich Mathematik, Technische Universität Darmstadt, Schlossgartenstrasse 7, 64289 Darmstadt, Germany, (kraynyukova@mathematik.tu-darmstadt.de; nesenenko@mathematik.tu-darmstadt.de)
Sergiy Nesenenko
Affiliation:
Fachbereich Mathematik, Technische Universität Darmstadt, Schlossgartenstrasse 7, 64289 Darmstadt, Germany, (kraynyukova@mathematik.tu-darmstadt.de; nesenenko@mathematik.tu-darmstadt.de)

Abstract

In this work we study the solvability of the initial boundary-value problems that model the quasi-static nonlinear behaviour of ferroelectric materials. Similar to the metal plasticity, the energy functional of a ferroelectric material can be additively decomposed into reversible and remanent parts. The remanent part associated with the remanent state of the material is assumed to be a convex non-quadratic function f of internal variables. In this work we introduce the notion of the measure-valued solutions for the ferroelectric models, and show their existence in the rate-dependent case, assuming the coercivity of the function f. Regularizing the energy functional by a quadratic positive-definite term, which can be viewed as hardening, we show the existence of measure-valued solutions for the rate-independent and rate-dependent problems, avoiding the coercivity assumption on f.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Alber, H.-D. and Chelmiński, K.. Quasistatic problems in viscoplasticity theory. I. Models with linear hardening. In Operator theoretical methods and applications to mathematical physics (ed. Gohberg, I., dos Santos, A. F., Speck, F.-O., Teixeira, F. S. and Wendland, W.). Operator Theory: Advances and Applications, vol. 147, pp. 105129 (Springer, 2004).CrossRefGoogle Scholar
2Barbu, V.. Nonlinear semigroups and differential equations in Banach spaces (Bucharest: Editura Academiei, 1976).CrossRefGoogle Scholar
3Fonseca, I. and Leoni, G.. Modern methods in the calculus of variations: Lp spaces (Springer, 2007).Google Scholar
4Giusti, E.. Direct methods in the calculus of variations (World Scientific, 2003).CrossRefGoogle Scholar
5Huber, J. E. and Fleck, N. A.. Multi-axial electrical switching of a ferroelectric: theory versus experiment. J. Mech. Phys. Solids 49 (2001), 785811.CrossRefGoogle Scholar
6Kamlah, M.. Ferroelectric and ferroelastic piezoceramics: modelling of elecromechanical hysteresis phenomena. Continuum Mech. Thermodyn. 13 (2001), 219268.CrossRefGoogle Scholar
7Kraynyukova, N. and Alber, H.-D.. A doubly nonlinear problem associated with a mathematical model for piezoelectric material behavior. Z. Angew. Math. Mech. 92 (2012), 141159.CrossRefGoogle Scholar
8Landis, C. M.. Fully coupled, multi-axial, symmetric constitutive laws for polycrystalline ferroelectric ceramics. J. Mech. Phys. Solids 50 (2002), 127152.CrossRefGoogle Scholar
9Landis, C. M.. Nonlinear constitutive modeling of ferroelectrics. Curr. Opin. Solid State Mater. Sci. 8 (2004), 5969.CrossRefGoogle Scholar
10McMeeking, R. M. and Landis, C. M.. A phenomenological multi-axial constitutive law for switching in polycrystalline ferroelectric ceramics. Int. J. Engng Sci. 40 (2002), 15531577.CrossRefGoogle Scholar
11Mielke, A. and Teil, F.. On rate-independent hysteresis models. NoDEA Nonlin. Diff. Eqns Applic. 11 (2004), 151189.Google Scholar
12Mielke, A. and Timofte, A. M.. An energetic material model for time-dependent ferroelectric behaviour: existence and uniqueness. Math. Meth. Appl. Sci. 29 (2006), 13931410.CrossRefGoogle Scholar
13Mielke, A., Rossi, R. and Savare, G.. Nonsmooth analysis of doubly nonlinear evolution equations. Calc. Var. PDEs 46 (2013), 253310.CrossRefGoogle Scholar
14Rockafellar, R. T.. Integrals which are convex functionals. Pac. J. Math. 24 (1968), 525539.CrossRefGoogle Scholar
15Romanovski, H. and Schröder, J.. Coordinate invariant modelling of the ferroelectric hysteresis within a thermodynamically consistent framework: a mesoscopic approach. In Trends in applications of mathematics to mechanics (ed. Wang, Y. and Hutter, K.), pp. 419428 (Maastricht: Shaker, 2005).Google Scholar
16Roubiĉek, T.. Nonlinear partial differential equations with applications. International Series of Numerical Mathematics, vol. 153 (Birkhäuser, 2005).Google Scholar
17Schröder, J. and Romanovski, H.. A thermodynamically consistent mesoscopic model for transversely isotropic ferroelectric ceramics in a coordinate-invariant setting. Arch. Appl. Mech. 74 (2005), 863877.CrossRefGoogle Scholar
18Showalter, E.. Monotone operators in Banach spaces and nonlinear partial differential equations. Mathematical Surveys and Monographs, vol. 49 (Providence, RI: American Mathematical Society, 1997).Google Scholar
19Valadier, M.. A course on Young measures. Rend. Istit. Mat. Univ. Trieste 26 (suppl.) (1994), 349394.Google Scholar
20Zalinescu, C.. Convex analysis in general vector spaces (World Scientific, 2002).CrossRefGoogle Scholar