No CrossRef data available.
Published online by Cambridge University Press: 14 November 2011
Let J(FG) be the Jacobson radical of the group algebra FG of a finite groupG with a Sylow 3-subgroup which is extra-special of order 27 of exponent 3 over a field F of characteristic 3, and let t(G) be the least positive integer t with J(FG)t = 0. In this paper, we prove that t(G) = 9 if G has a normal subgroup H such that (|G:H|, 3) = 1 and if H is either 3-solvable, SL(3,3) or the Tits simple group 2F4(2)'.