We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Departament de Matemàtiques, Edifici Cc, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Barcelona, Spain (davidmp@mat.uab.cat)Centre de Recerca Matemàtica, Edifici Cc, Campus de Bellaterra, 08193, Cerdanyola del Vallès, Barcelona, Spain
M. Saavedra
Affiliation:
Departamento de Matemática, Facultad de Ciencias Físicas y Matemáticas, Universidad de Concepción, Barrio Universitario, Concepción, Casilla 160-C, Chile (mariansa@udec.cl)
J. Villadelprat
Affiliation:
Departament d'Enginyeria Informàtica i Matemàtiques, ETSE, Universitat Rovira i Virgili, 43007 Tarragona, Spain (jordi.villadelprat@urv.cat)
parametrized by $(\varepsilon,\,a)$ with $\varepsilon \approx 0$ and $a$ in an open subset $A$ of $ {\mathbb {R}}^{\alpha },$ and we study the Dulac time $\mathcal {T}(s;\varepsilon,\,a)$ of one of its hyperbolic sectors. We prove (theorem 1.1) that the derivative $\partial _s\mathcal {T}(s;\varepsilon,\,a)$ tends to $-\infty$ as $(s,\,\varepsilon )\to (0^{+},\,0)$ uniformly on compact subsets of $A.$ This result is addressed to study the bifurcation of critical periods in the Loud's family of quadratic centres. In this regard we show (theorem 1.2) that no bifurcation occurs from certain semi-hyperbolic polycycles.
Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)
References
1
Chicone, C.. The monotonicity of the period function for planar Hamiltonian vector fields. J. Differ. Equ. 69 (1987), 310–321.CrossRefGoogle Scholar
2
Chicone, C. and Jacobs, M.. Bifurcation of critical periods for plane vector fields. Trans. Amer. Math. Soc. 312 (1989), 433–486.CrossRefGoogle Scholar
3
Chicone, C., review in MathSciNet, ref. 94h:58072.Google Scholar
4
Christopher, C. and Devlin, J.. On the classification of Liénard systems with amplitude-independent periods. J. Differ. Equ. 200 (2004), 1–17.CrossRefGoogle Scholar
5
Cima, A., Ma-osas, F. and Villadelprat, J.. Isochronicity for several classes of Hamiltonian systems. J. Differ. Equ. 157 (1999), 373–413.CrossRefGoogle Scholar
6
Coppel, W. A. and Gavrilov, L.. The period function of a Hamiltonian quadratic system. Differ. Integr. Equ. 6 (1993), 1357–1365.Google Scholar
7
Dumortier, F., Llibre, J. and Artés, J. C., Qualitative theory of planar differential systems, Universitext (Springer-Verlag, Berlin, 2006).Google Scholar
8
Fonda, A., Sabatini, M. and Zanolin, F.. Periodic solutions of perturbed Hamiltonian systems in the plane by the use of the Poincaré-Birkhoff Theorem. Topol. Methods Nonlinear Anal. 40 (2012), 29–52.Google Scholar
9
Françoise, J.-P. and Pugh, C.. Keeping track of limit cycles. J. Differ. Equ. 65 (1986), 139–157.CrossRefGoogle Scholar
10
Gasull, A., Guillamon, A. and Villadelprat, J.. The period function for second-order quadratic ODEs is monotone. Qual. Theory Dyn. Syst. 4 (2004), 329–352.CrossRefGoogle Scholar
11
Gasull, A., Ma-osa, V. and Ma-osas, F.. Stability of certain planar unbounded polycycles. J. Math. Anal. Appl. 269 (2002), 332–351.CrossRefGoogle Scholar
12
Gasull, A., Liu, C. and Yang, J.. On the number of critical periods for planar polynomial systems of arbitrary degree. J. Differ. Equ. 249 (2010), 684–692.CrossRefGoogle Scholar
13
Grau, M. and Villadelprat, J.. Bifurcation of critical periods from Pleshkan's isochrones. J. London Math. Soc. 81 (2010), 142–160.CrossRefGoogle Scholar
14
Greuel, G.-M., Lossen, C. and Shustin, E., Introduction to singularities and deformations, Springer Monogr. Math. (Springer, Berlin, 2007).Google Scholar
15
Guckenheimer, J. and Holmes, P., Nonlinear oscillations, dynamical systems, and bifurcations of vector fields, Appl. Math. Sci. Vol. 42 (Springer-Verlag, New York, 1983).CrossRefGoogle Scholar
16
Krantz, S. G. and Parks, H. R., A Primer of Real Analytic Functions, Birkhäuser Advanced Texts (Birkhäuser, Basel, 2002).CrossRefGoogle Scholar
17
Mardešić, P., Marín, D. and Villadelprat, J.. On the time function of the Dulac map for families of meromorphic vector fields. Nonlinearity16 (2003), 855–881.CrossRefGoogle Scholar
18
Mardešić, P., Marín, D. and Villadelprat, J.. The period function of reversible quadratic centers. J. Differ. Equ. 224 (2006), 120–171.CrossRefGoogle Scholar
19
Mardešić, P., Marín, D. and Villadelprat, J.. Unfolding of resonant saddles and the Dulac time. Discrete Contin. Dyn. Syst. 21 (2008), 1221–1244.CrossRefGoogle Scholar
20
Mardešić, P., Marín, D., Saavedra, M. and Villadelprat, J.. Unfoldings of saddle-nodes and their Dulac time. J. Differ. Equ. 261 (2016), 6411–6436.CrossRefGoogle Scholar
21
Marín, D. and Villadelprat, J.. On the return time function around monodromic polycycles. J. Differ. Equ. 228 (2006), 226–258.CrossRefGoogle Scholar
22
Roussarie, R., Bifurcation of planar vector fields and Hilbert's sixteenth problem, Progr. Math. Vol. 164 (Birkhüser Verlag, Basel, 1998).CrossRefGoogle Scholar
23
Saavedra, M.. Dulac time of a resonant saddle in the Loud family. J. Differ. Equ. 269 (2020), 7705–7729.CrossRefGoogle Scholar
24
Villadelprat, J.. On the reversible quadratic centers with monotonic period function. Proc. Amer. Math. Soc. 135 (2007), 2555–2565.CrossRefGoogle Scholar
25
Xingwu, C. and Zhang, W.. Isochronicity of centers in a switching Bautin system. J. Differ. Equ. 252 (2012), 2877–2899.Google Scholar
26
Ye, Yan-Qian, et al. , Theory of limit cycles, Transl. Math. Monogr. Vol. 66 (American Mathematical Society, Providence, RI, 1986).Google Scholar
27
Zhao, Y.. On the monotonicity of the period function of a quadratic system. Discrete Contin. Dyn. Syst. 13 (2005), 795–810.CrossRefGoogle Scholar
This article has been cited by the following publications. This list is generated based on data provided by
Crossref.
Marín, D.
and
Villadelprat, J.
2022.
The criticality of reversible quadratic centers at the outer boundary of its period annulus.
Journal of Differential Equations,
Vol. 332,
Issue. ,
p.
123.