Published online by Cambridge University Press: 14 November 2011
It is shown that the equation (p2y”)”–(p1y’)’+ p0y = 0 has exactly two linearly independent solutions on [0,∞) with finite Dirichlet integral when the coefficients are nonnegative and p2 satisfies a condition which includes all nondecreasing functions. An inequality for the Dirichlet form is derived and used to extend characterizations of the domains of certain self-adjoint operations associated with the differential expression to arbitrary symmetric boundary conditions at 0.