Published online by Cambridge University Press: 12 July 2007
In the first part of this paper, a variational characterization of parts of the Fučík spectrum for the Laplacian in a bounded domain Ω is given. The proof uses a linking theorem on sets obtained through a suitable deformation of subspaces of H1 (Ω). In the second part, a nonlinear Sturm–Liouville equation with Neumann boundary conditions on an interval is considered, where the nonlinearity intersects all but a finite number of eigenvalues. It is proved that, under certain conditions, this equation is solvable for arbitrary forcing terms. The proof uses a comparison of the minimax levels of the functional associated to this equation with suitable values related to the Fucík spectrum.