Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-28T04:45:12.043Z Has data issue: false hasContentIssue false

On an elliptic problem with boundary blow-up and a singular weight: the radial case

Published online by Cambridge University Press:  12 July 2007

M. Chuaqui
Affiliation:
Facultad de Matemáticas, Universidad Católica de Chile, Casilla 306, correo 22—Santiago, Chilemchuaqui@mat.puc.cl
C. Cortázar
Affiliation:
Facultad de Matemáticas, Universidad Católica de Chile, Casilla 306, correo 22—Santiago, Chileccortaza@mat.puc.cl
M. Elgueta
Affiliation:
Facultad de Matemáticas, Universidad Católica de Chile, Casilla 306, correo 22—Santiago, Chilemelgueta@mat.puc.cl
C. Flores
Affiliation:
Departamento de Matemática, Universidad de Concepción, Casilla 3-C—Concepción, Chilecflores@gauss.cfm.udec.cl
R. Letelier
Affiliation:
Departamento de Matemática, Universidad de Concepción, Casilla 3-C—Concepción, Chilejjgarmel@ull.es
J. García-Melián
Affiliation:
Departamento de Análisis Matemáico, Universidad de La Laguna, c/. Astrofísico Francisco Sánchez s/n, 38271—La Laguna, Spain; and Centro de Modelamiento Matemático, Universidad de Chile, Blanco Encalada 2120, 7 piso—Santiago, Chile (rletelie@gauss.cfm.udec.cl)

Abstract

In this work we consider the non-autonomous problem Δu = a(x)um in the unit ball B ⊂ RN, with the boundary condition u|∂B = +∞, and m > 0. Assuming that a is a continuous radial function with a(x) ˜ C0 dist(x, ∂B)−γ as dist(x, ∂B) → 0, for some C0 > 0, γ > 0, we completely determine the issues of existence, multiplicity and behaviour near the boundary for radial positive solutions, in terms of the values of m and γ. The case 0 < m ≤ 1, as well as estimates for solutions to the linear problem m = 1, are a significant part of our results.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)