Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-27T18:28:14.816Z Has data issue: false hasContentIssue false

On positive differential operators (deficiency indices, factorization, perturbations)

Published online by Cambridge University Press:  14 November 2011

F. S. Rofe-Beketov
Affiliation:
Physico-Technical Institute of Low Temperatures, Ukr.S.S.R. Academy of Sciences, Kharkov, U.S.S.R.

Synopsis

A short survey is given of some recent results. The perturbations and stability of discrete spectrum and the problems of resolvent convergence of densely or non-densely defined elliptic differential operators are considered. The Courant theorem on variations of the domain is generalized. In connection with Berezanskiy's theorem on essential self-adjointness, the test for the finite velocity of propagation is extended. The Frobenius and the Krein-Heinz-Rellich factorization theorems and the Etgen Pawlowski oscillation criterion are generalized for equations of any order with operator-valued coefficients. Brusentsev's recent example of a two term fourth order differential operator with deficiency index 4 is discussed.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Everitt, W. N.. On the deficiency index problem for ordinary differential operators 1910–1976. Differential equations (Proc. Internat. Conf. Uppsala, 1977), 6281 (Stockholm; Almqvist & Wiksell 1977).Google Scholar
2aKauffman, R. M., Read, T. T. and Zettl, A.. The deficiency index problem for powers of ordinary differential expressions. Lecture Notes in Mathematics 621 (New York: Springer, 1977).Google Scholar
2bEvans, W. D. and Zettl, A.. Interval limit-point criteria for differential expressions and their powers. J. London Math. Soc. 15 (1977), 119133.CrossRefGoogle Scholar
2cMirzoev, G. A.. Description of self-adjoint extensions of quasi-regular operators generated by two-term differential expressions. Mat. Zametki 29 (1981), 225233 (in Russian).Google Scholar
3Brunsentsev, A. G.. On essential self-adjointness of higher-order semibounded elliptic operators. Differencial'nye Uravenija (to be published) (in Russian).Google Scholar
4Povzner, A. Ya.. The expansion of arbitrary functions in eigenfunctions of the operator −δu + cu. Mat. Sb. 32 (1953), 109156 (in Russian).Google Scholar
5Glazman, I. M.. Direct methods of qualitative spectral analysis of singular differential operators. Eng. transl. (New York: Daniel Davey, 1966).Google Scholar
6Wienholtz, E.. Halbbeschränkte partielle Differentialoperatoren zweiter Ordung vom elliptischen Typus. Math. Ann. 135 (1958), 5080.CrossRefGoogle Scholar
7Everitt, W. N. and Zettl, A.. The number of integrable-square solutions of products of differential expressions. Proc. Roy. Soc. Edinburgh Sect. A 76 (1977), 215226.CrossRefGoogle Scholar
8Brusentsev, A. G. and Rofe-Beketov, F. S.. Self-adjointness conditions for strongly elliptic systems of arbitrary order. Mat. Sb. 95 (1974), 108129 (in Russian).Google Scholar
9Dunford, N. and Schwartz, J. T.. Linear operators II (New York: Interscience, 1963).Google Scholar
10Khol'kin, A. M.. Self-adjoint boundary conditions at infinity for a quasi-regular system of even-order differential equations. In The theory of operators in functional spaces and its applications, 174183 (Kiev: Naukova dumka, 1981) (in Russian).Google Scholar
11Khol'kin, A. M.. Self-adjoint boundary conditions at infinity for an absolutely indefinite system of differential equations of arbitrary order. Deposited in VINITI, No. 4801–80 Dep (in Russian). (RZh Mat., 1981, 2B774 Dep.).Google Scholar
12Krein, M. G.. On indefinite case of the Sturm-Liouville boundary problem in the interval (0, ∞). Izv. Akad. Nauk SSSR Ser. Mat. 16 (1952), 293321 (in Russian).Google Scholar
13Gorbachuk, M. L.. On spectral functions of a second-order differential equation with operator coefficients. Ukrain. Mat. Z. 18 (1966), 321 (in Russian).Google Scholar
14Fulton, C. T.. Parameterization of Titchmarsh's m(ℷ)-functions in the limit circle case. Trans. Amer. Math Soc. 229 (1977), 5163.Google Scholar
15Orochko, Yu. B.. On the property of the global finite velocity of propagation of the second-order elliptic differential expression. Differencial'nye Uraveninja 18 (1982), 17461772 (in Russian).Google Scholar
16Rofe-Beketov, F. S. and Khol'kin, A. M.. Conditions for the self-adjointness of second-order elliptic operators of the general type. Teor. Funkciǐ Funkcional. Anal i Priložen. 17 (1973), 4151 (in Russian).Google Scholar
17Walter, J.. Note on a paper by Stetkae r-Hansen concerning essential self-adjointness of Schroedinger operators. Math. Scand. 25 (1969), 9496.CrossRefGoogle Scholar
18Chumak, A. A.. Self-adjointness of the Beltrami-Laplace operator on the complete paracompact Rimannian manifold without edge. Ukrain. Mat. Ž. 25 (1973), 784791 (in Russian).Google Scholar
19Berezanskiy, Yu. M. and Samoilenko, V. G.. Self-adjointness of differential operators with a finite or infinite number of variables and the evolution equations. Uspehi Mat. Nauk 36 (1981), 356 (in Russian).Google Scholar
20Rofe-Beketov, F. S. and Khol'kin, A. M.. The connection between spectral and oscillatory properties of differential systems of arbitrary order. Dokl. Akad. Nauk SSSR 261 (1981), 551555 (in Russian).Google Scholar
21Krein, M. G.. Sur les opèrateurs différentiels autoadjoints et leur fonctions de Green symétriques. Mat. Sb. 2 (1937), 10231072 (in French).Google Scholar
22Heinz, E.. Halbbeschränktheit gewöhnlicher Differentialoperatoren höherer Ordnung (Auf grund des Nachlasses von F. Rellich). Math. Ann. 135 (1958), 149.Google Scholar
23Etgen, G. J. and Pawlowski, J. F.. A comparison theorem and oscillation criteria for second order differential systems. Pacific J. Math. 72 (1977), 5969.CrossRefGoogle Scholar
24Kato, T.. Perturbation theory for linear operators (New York: Springer, 1966; 2nd edn, 1976).Google Scholar
25Reed, M. and Simon, B.. Methods of modem mathematical physics. 1. Functional analysis (New York-London: Academic Press, 1972).Google Scholar
26Simon, B.. A canonical decomposition for quadratic forms with applications to monotone convergence theorems. J. Funct. Anal. 28 (1978), 377385.CrossRefGoogle Scholar
27Rofe-Beketov, F. S.. Perturbations and Friedrichs extensions of semibounded operators on variable domains. Dokl. Akad. Nauk SSSR 255 (1980), 10541058 (in Russian).Google Scholar
28Simon, B.. Lower semicontinuity of positive quadratic forms. Proc. Roy. Soc. Edinburgh Sect. A 79 (1978), 267273.CrossRefGoogle Scholar
29Titchmarsh, E. C.. Eigenfunction expansions, pt II. (Oxford: Clarendon Press, 1958).Google Scholar
30Courant, R. and Hilbert, D.. Methods of mathematical physics, vol. I. Engl. transl. (New York: Interscience, 1953).Google Scholar
31Sobolev, S. L.. Applications of functional analysis in mathematical physics. Engl. transl. (Providence, R. I.: Amer. Math. Soc., 1963).CrossRefGoogle Scholar
32Nikol'sky, S. M.. Approximation of functions of several variables and embedding theorems. Engl. transl. (New York: Springer, 1974).Google Scholar
33Levitan, B. M. and Sargsyan, I. S.. Introduction to spectral theory. Engl. transl. (Providence, R. I.: Amer. Math. Soc., 1975).Google Scholar
34Levitan, B. M.. On expansion in eigenfunctions of a self-adjoint partial differential equation. Trudy Moskov. Mat. Obšč. 5 (1956), 269298 (in Russian).Google Scholar
35Shtraus, A. V.. On extensions of semibounded operator. Dokl. Akad. Nauk SSSR 211 (1973), 543546 (in Russian).Google Scholar
36Shtraus, A. V.. On self-adjoint extensions of a semibounded operator. Functional Analysis, No. 7, 161171 (Ul'yanovsk: Ul'yanovsk. Gos. Ped. Inst., 1976) (in Russian).Google Scholar
37Coddington, E. A. and de Snoo, H. S. V.. Positive self-adjoint extensions of positive symmetric subspaces. Math. Z. 159 (1978), 203214.CrossRefGoogle Scholar
38Koshmanenko, V. D.. Operator representation for nonclosable quadratic forms and the scattering problem. Dokl. Akad. Nauk SSSR 245 (1979), 295298 (in Russian).Google Scholar
39Bruk, V. M. and Krinvonogov, N. P.. On convergence of sectorial forms. Functional Analysis, No. 19, 2025 (Ul'yanovsk: Ul'yanovsk. Gos. Ped. Inst., 1981) (in Russian).Google Scholar
40Beresanskiy, Yu. M.. Bilinear forms and Hilbert riggings. In Spektralnyi analiz differentsialnykh operatorov, 83106 (Kiev: Inst. of Math, of Acad. of Sci of Ukr. S.S.R., 1980) (in Russian).Google Scholar
41Otelbaev, M.. The coincidence criterion for elliptic operator extensions corresponding to Dirichlet and Neumann problems. Mat. Zametki 29 (1981), 867876 (in Russian).Google Scholar
42Krein, M. G.. Theory of self-adjoint extensions of semibounded Hermitian operators and its applications, I, II. Mat. Sb. 20 (1947), 431495; 21 (1947), 366–404, (in Russian).Google Scholar
43Akhiezer, N. I. and Glazman, I. M.. Theory of linear operators in Hilbert space. II. Engl. transl. (from the 3rd Russian rev. ed.) ed. by Everitt, W. N. (Boston, London, Melbourne: Pitman; and Edinburgh: Scottish Academic Press, 1981).Google Scholar
44Alonso, A. and Simon, B.. The Birman-Krein-Vishik theory of self-adjoint extensions of semibounded operators. J. Operator Theory 4 (1980), 251270.Google Scholar
45Marchenko, V. A. and Khruslov, E. Ya.. Boundary-value problems in domains with a fine-grained boundary (Kiev: Naukova dumka, 1974) (in Russian).Google Scholar
46. Žikov, V. V.. On the G-convergence of elliptic operators. Mat. Zametki 33 (1983), 345356 (in Russian).Google Scholar
47Perelmuter, M. A. and Semenov, Yu. A.. On finiteness of the perturbation distribution rate for hyperbolic equations. Ukrain. Mat. Ž. 36 (1984), 5663 (in Russian).Google Scholar
48Guseinov, I. M. and Pashaev, R. T.. The description of self-adjoint extensions of a class of differential operators of 2n-order with deficiency indices (n + k, n + k), 0<k<n. Izv. Akad. Nauk Azerbaǐdžan. SSR Ser. Fiz.-Tehn. Mat Nauk 2 (1983), 1519 (in Russian).Google Scholar