Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T08:07:43.776Z Has data issue: false hasContentIssue false

On the KOℤ/2-Euler class, II

Published online by Cambridge University Press:  14 November 2011

M. C. Crabb
Affiliation:
Department of Mathematics, University of Aberdeen, Aberdeen AB9 2TY, Scotland, U.K

Synopsis

Let ξ be an oriented n-dimensional real vector bundle over an oriented closed m-manifold X. An r-field on ξ defined outside a finite subset of X has an index in the homotopy group πm−l(Vn,r) of the Stiefel manifold of r-frames in ℝn. The principal theorems of this paper relate the d and e-invariants of an associated ℝ/2-equivariant stable homotopy class, in certain cases, to computable cohomology characteristic numbers. Results of this type were first obtained by Atiyah and Dupont [5].

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Adams, J. F.. On the Chern character and the structure of the unitary group. Proc. Cambridge Philos. Soc. 57 (1961), 189199.CrossRefGoogle Scholar
2Adams, J. F.. On the groups J(X), II. Topology 3 (1965), 137171.CrossRefGoogle Scholar
3Adams, J. F.. On the groups J(X), IV. Topology 5 (1966), 2171.CrossRefGoogle Scholar
4Adem, A., Cohen, R. L. and Dwyer, W. G.. Generalized Tate Homology, Homotopy Fixed Points and the Transfer. In Contemporary Mathematics (Algebraic Topology, eds. Mahowald, M. and Priddy, S.) 96 (1989), 113.Google Scholar
5Atiyah, M. F. and Dupont, J. L.. Vector fields with finite singularities. Acta Math. 128 (1972), 140.CrossRefGoogle Scholar
6Atiyah, M. F. and Hirzebruch, F.. Quelques théorèmes de non-plongement pour les variété's différentiables. Bull. Soc. Math. France 87 (1959), 383396.CrossRefGoogle Scholar
7Atiyah, M. F. and Hirzebruch, F.. Cohomologie-Operationen und charakteristische Klassen. Math. Z. 77 (1961), 149187.Google Scholar
8Atiyah, M. F. and Rees, E.. Vector Bundles on projective 3-space. Invent. Math. 35 (1976), 131153.Google Scholar
9Atiyah, M. F. and Singer, I. M.. The index of elliptic operators, III. Ann. of Math. 87 (1968), 546604.Google Scholar
10Bredon, G. E.. Equivariant cohomology theories. Lecture Notes in Mathematics 34 (Berlin: Springer, 1967).Google Scholar
11Carlsson, G.. Equivariant stable homotopy theory and Segal's Burnside ring conjecture. Ann. of Math. 120 (1984), 189224.Google Scholar
12Crabb, M. C.. Invariants of fixed-point-free circle actions. In Advances in Homotopy Theory, eds Salamon, S. M., Steer, B. and Sutherland, W. A. (Edinburgh: Cambridge University Press, 1989). London Math. Soc. Lecture Note Series 139.Google Scholar
13Crabb, M. C.. On the KO ℝ/2-Euler class, I. Proc. Roy. Soc. Edinburgh Sect. A 117 (1991), 115137.Google Scholar
14Crabb, M. C. and Steer, B.. Vector bundle monomorphisms with finite singularities. Proc. London Math. Soc. 30 (1975), 139.Google Scholar
15Davis, D. M. and Mahowald, M.. The spectrum (P Λ bo)–∞. Math. Proc. Cambridge Philos. Soc. 96 (1984), 8593.Google Scholar
16Dieck, T. torn. Transformation groups (Berlin: Walter de Gruyter, 1987).Google Scholar
17Dold, A. and Thorn, R.. Quasifaserungen und unendliche symmetrische Produkte. Ann. of Math. 67 (1958), 239281.CrossRefGoogle Scholar
18Koschorke, U.. Vector fields on (4q + 2)-manifolds. Lecture Notes in Math. 788 (1980), 98108.Google Scholar
19Mahowald, M. and Milgram, R. J.. Operations which detect Sq4 in connective K-theory and their applications. Quart. J. Math. Oxford 27 (1976), 415432.CrossRefGoogle Scholar
20Mayer, K. H.. Elliptische Differentialoperatoren und Ganzzahligkeitssätze für charakteristische Zahlen. Topology 4 (1965), 295313.CrossRefGoogle Scholar
21Segal, G. B.. k-homology theory and algebraic K-theory. Lecture Notes in Math. 575 (1977), 113127.Google Scholar
22Segal, G. B.. Some results in equivariant homotopy theory (manuscript).Google Scholar