Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-26T19:43:31.208Z Has data issue: false hasContentIssue false

On the quenching set for a fast diffusion equation: regional quenching

Published online by Cambridge University Press:  12 July 2007

R. Ferreira
Affiliation:
Departamento de Matemáticas, Universidad Carlos III de Madrid, Avda. de la Universidad 30, 28911 Leganés, Spain (raul.ferreira@uc3m.es)
A. de Pablo
Affiliation:
Departamento de Matemáticas, Universidad Carlos III de Madrid, Avda. de la Universidad 30, 28911 Leganés, Spain (arturop@math.uc3m.es)
F. Quirós
Affiliation:
Departamento de Matemáticas, Universidad Autónoma de Madrid, 28049 Madrid, Spain (fernando.quiros@uam.es)
J. D. Rossi
Affiliation:
Departamento de Matemática, F.C.E y N., Universidad de Buenos Aires, 1428 Buenos Aires, Argentina (jrossi@dm.uba.ar)

Abstract

We study positive solutions of a very fast diffusion equation, ut = (um−1ux)x, m < 0, in a bounded interval, 0 < x < L, with a quenching-type boundary condition at one end, u (0, t) = (Tt)1/(1 − m) and a zero-flux boundary condition at the other, (um −1ux)(L, t) = 0. We prove that for m ≥ −1 regional quenching is not possible: the quenching set is either a single point or the whole interval. Conversely, if m < −1 single-point quenching is impossible, and quenching is either regional or global. For some lengths the above facts depend on the initial data. The results are obtained by studying the corresponding blow-up problem for the variable v = um −1.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)