Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-26T20:49:17.607Z Has data issue: false hasContentIssue false

On the Schrödinger equation with time-dependent electric fields

Published online by Cambridge University Press:  14 November 2011

Rafael José Iório Jr
Affiliation:
Instituto de Matemática Pura e Aplicada (IMPA), Rio de Janeiro, RJ, Brasil
Dan Marchesin
Affiliation:
Pontifícia Universidade Católica do Rio de Janeiro, RJ, Brasil, and Courant Institute of Mathematical Sciences, New York, U.S.A.

Synopsis

We prove existence and uniqueness of solutions of i(∂ψ/∂t) = (−Δ+x1g(t)+q(x))ψ, ψ(x, s) = ψs (x) in ℝ3 for potentials q(x) including the Coulomb case. Existence and completeness of the wave operators is established for g(t) periodic with zero mean and q(x) short-range, smooth in the x1 direction. We characterize scattering and bound states in terms of the period operator.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Agmon, S.. Spectral properties of Schrodinger operators and scattering theory. Ann. Scuola Norm. Sup. Pisa O. Sci. 2 (1975), 151218Google Scholar
2Alsholm, P. and Schmidt, G.. Spectral and scattering theory for Schrodinger operators. Arch. Rational Mech. Anal. 40 (1971), 281311.CrossRefGoogle Scholar
3Amrein, W., Jauch, J.and Sinha, K.. Scattering Theory in Quantum Mechanics (Benjamin, W. A. Advanced Book Program) (Reading, Mass.: W. A. Benjamin, 1977).Google Scholar
4Avron, J. and Herbst, I.. Spectral and scattering theory of Schrodinger operators related to the Stark effect. Commun. Math. Phys. 52 (1977), 239254.CrossRefGoogle Scholar
5Berezanskii, Ju.. Expansion in Eigenfunctions of self-adjoint Operators (Translations of Mathematical Monographs, vol. 17) (Providence, R.I.: Amer. Math. Soc., 1968).CrossRefGoogle Scholar
6Ginibre, J. and Moulin, M.. Hilbert space approach to the quantum mechanical three-body Problem. Ann. Inst. H. Poincare 21 (1974), 97145.Google Scholar
7Howland, J.. Stationary scattering theory for time-dependent Hamiltonians. Math. Ann. 207 (1974), 315335.CrossRefGoogle Scholar
8Howland, J.. Scattering theory for Hamiltonians periodic in time. Indiana Univ. Math. J. 28 (1979), 471494.CrossRefGoogle Scholar
9Howland, J.. Two problems with time-dependent Hamiltonians Lecture Notes in Physics 130(ed. De Santo, J. A., Saenz, A. W. and Zachary, Kl.) (Berlin: Springer, 1980).Google Scholar
10Iorio, R. J., Jr. On the discrete spectrum of the N-body quantum mechanical Hamiltonian, I. Commun. Math. Phys. 62 (1978), 201212.CrossRefGoogle Scholar
11Iorio, R. J., Jr. Perturbations of (–λ) that grow at infinity in certain directions. Bol. Soc. Brasil. Mat. 11 (1980), 3750.CrossRefGoogle Scholar
12Kato, T.. Linear evolution equations of “hyperbolic” type. J. Fac. Sci. Univ. Tokyo, Sect. 1A 17 (1970), 241258.Google Scholar
13Kato, T.. Linear evolution equations of “hyperbolic” type, II. J. Math. Soc. Japan 25 (1973), 648666.CrossRefGoogle Scholar
14Kato, T. and Kuroda, S.. The abstract theory of scattering. Rocky Mountain J. Math. 1 (1971), 127171.CrossRefGoogle Scholar
15Kitada, H. and Yajima, . A scattering theory for time-dependent long-range potentials. Duke Math. J. 49 (1982), 341376.CrossRefGoogle Scholar
16Reed, M. and Simon, B.. Methods of Modem Mathematical Physics, vol. I (New York: Academic Press, 1972).Google Scholar
17Reed, M. and Simon, B.. Methods of Modem Mathematical Physics, vol.II (New York: Academic Press, 1975).Google Scholar
18Reed, M.and Simon, B.. Methods of Modem Mathematical Physics, vol. IV (New York: Academic Press, 1977).Google Scholar
19Yajima, K.. Scattering theory for Schrodinger equations with potential periodic in time. J. Math. Soc. Japan 29 (1977), 729743.CrossRefGoogle Scholar
20Yajima, K.. Spectral and scattering theory for Schrodinger operators with Stark effect. J. Fac. Sci. Univ. Tokyo, Sect. 1A 26 (1979), 377390.Google Scholar