Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-13T07:36:45.476Z Has data issue: false hasContentIssue false

On the stochastic nonlinear neutron transport equation

Published online by Cambridge University Press:  14 November 2011

Mustapha Mokhtar-Kharroubi
Affiliation:
Universite de Franche-Comte, U.A. CNRS 741, 25030 Besanc.on Cedex, France

Synopsis

The probability that a neutron leads to a divergent chain reaction in a nuclear reactor is governed by a nonlinear integro-partial-differential equation [1]. A model case of this equation was completely analysed by Pazy and Rabinowitz [2,3]. The purpose of this paper is to extend their results to the general case and to tackle some related topics.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Bell, G. I.. On the stochastic theory of neutron transport. Nuclear Sci. and Eng. 21 (1965), 390401.CrossRefGoogle Scholar
2Pazy, A. and Rabinowitz, P. H.. A nonlinear integral equation with applications to neutron transport theory. Arch. Rational Mech. Anal. 32 (1969), 226246.CrossRefGoogle Scholar
3Pazy, A. and Rabinowtiz, P. H.. Corrigendum. Arch. Rational. Mech. Anal. 35 (1969), 409410.CrossRefGoogle Scholar
4Mokhtar-Kharroubi, M.. La compacite dans la theorie du transport des neutrons. C. R. Acad. Sci. Paris Sér I 303 (13) (1986), 617619.Google Scholar
5Mokhtar-Kharroubi, M.. The time asymptotic behaviour and the compactness in neutron transport theory. European J. Mec. B Fluids 11 (1992) 3968.Google Scholar
6Mokhtar-Kharroubi, M.. Effets regularisants en theorie neutronique. C. R. Acad. Sci. Paris Sér. I 309 (1990) 545548.Google Scholar
7Guo, D. and Lakshmikantham, V.. Nonlinear problems in abstract cones, Notes and reports in mathematics in Science and Engineering 5. (New York: Academic Press, 1988).Google Scholar
8Guo, D.. On the solution of a nonlinear integral equation in neutron transport theory (in Chinese). Ada Math. Sinica 22 (1979), 231236 (cited in [7]).Google Scholar
9Mokhtar-Kharroubi, M.. Some spectral properties of the neutron transport operator in bounded geometries. Transport Theory Statist. Phys. 16 (1987), 935958.CrossRefGoogle Scholar
10Cessenat, M.. Theoremes de trace Lp pour des espaces de fonctions de la neutronique. C. R. Acad. Sci Paris Sér. I 299 (1984), 831834.Google Scholar
11Cessenat, M.. Théorèmes de trace pour des espaces de fonctions de la neutronique. C. R. Acad. Sci Paris Sér I, 300 (1985), 8992.Google Scholar
12Voigt, J.. Functional analytic treatment of the initial boundary value problem for collisionless gases (Habilitations-schrift, Munchen, 1980).Google Scholar
13Vidav, I.. Existence and uniqueness of nonnegative eigenfunctions of the Boltzmann operator. J. Math. Anal. Appl. 22 (1968), 144155.CrossRefGoogle Scholar
14Taylor, A.. Introduction to functional analysis (New York: Wiley, 1958).Google Scholar
15Pagter, B. De. Irreductible compact operators. Math Z. 192 (1986), 149153.CrossRefGoogle Scholar
16Mokhtar-Kharroubi, M.. Quelques applications de la positivité en théorie du Transport. Ann. Fac. Sci. Toulouse Math. 5 XI (1990), 7599.CrossRefGoogle Scholar
17Pao, C. V.. Asymptotic behavior of the solution for the time dependent neutron transport problem. J. Integral Equations 1 (1979), 131152.Google Scholar