Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-27T06:49:36.575Z Has data issue: false hasContentIssue false

Pattern formation of the stationary Cahn-Hilliard model

Published online by Cambridge University Press:  14 November 2011

Hansjörg Kielhöfer
Affiliation:
Universität Augsburg, Institut für Mathematik, Universitätsstrasse 14, 86135 Augsburg, Germany

Extract

We investigate critical points of the free energy Eε(u) of the Cahn–Hilliard model over the unit square under the constraint of a mean value ü. We show that for any fixed value ü in the so-called spinodal region and to any mode of an infinite class, there are critical points of Eε(u) having the characteristic symmetries of that mode provided ε > 0 is small enough. As ε tends to zero, these critical points have singular limits forming characteristic patterns for each mode. Furthermore, any singular limit is a stable critical point of E0(u)). Our method consists of a global bifurcation analysis of critical points of the energy Eε(u) where the bifurcation parameter is the mean value ü.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Carr, J., Gurtin, M. E. and Slemrod, M.. Structured phase transitions on a finite interval. Arch. Rational Mech. Anal. 86 (1984), 317–51.CrossRefGoogle Scholar
2Crandall, M. and Rabinowitz, P. H.. Bifurcation from simple eigenvalues. J. Fund. Anal. 8 (1971), 321–40.CrossRefGoogle Scholar
3Fife, P. C., Kielhöfer, H., Maier-Paape, S. and Wanner, T.. Perturbation of doubly periodic solution branches with applications to the Cahn-Hilliard equation. Phys. D 100 (1997), 257–78.CrossRefGoogle Scholar
4Grinfeld, M. and Novick-Cohen, A.. Counting stationary solutions of the Cahn-Hilliard equation by transversality arguments. Proc. Roy. Soc. Edinburgh Sect. A 125 (1995), 351–70.CrossRefGoogle Scholar
5Healey, T. J. and Kielhöfer, H.. Symmetry and nodal properties in the global bifurcation analysis of quasi-linear elliptic equations. Arch. Rational Mech. Anal. 113 (1991), 299311.CrossRefGoogle Scholar
6Healey, T. J. and Kielhofer, H.. Preservation of nodal structure on global bifurcating solution branches of elliptic equations with symmetry. J. Differential Equations 106 (1993), 7089.CrossRefGoogle Scholar
7Holzmann, M.. Eindeutigkeit und Parametrisierbarkeit globaler positiver Losungszweige nichtlinearer elliptischer Probleme (Ph.D. Thesis, Universitat Augsburg, 1993).Google Scholar
8Holzmann, M. and Kielhofer, H.. Uniqueness of global positive solution branches of nonlinear elliptic problems. Math. Ann. 300 (1994), 221–41.CrossRefGoogle Scholar
9Kielhöfer, H.. On the Lyapunov-stability of stationary solutions of semilinear parabolic differential equations. J. Differential Equations 22 (1976), 193208.CrossRefGoogle Scholar
10Kielhofer, H.. Degenerate bifurcation at simple eigenvalues and stability of bifurcating solutions. J. Fund. Anal. 38 (1980), 416–41.CrossRefGoogle Scholar
11Modica, L.. The gradient theory of phase transitions and the minimal interface criterion. Arch. Rational Mech. Anal. 98 (1987), 123–42.CrossRefGoogle Scholar
12Rabinowitz, P. H.. Some global results for nonlinear eigenvalue problems. J. Fund. Anal. 7 (1971), 487513.CrossRefGoogle Scholar