Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-27T10:53:18.035Z Has data issue: false hasContentIssue false

Pointwise convergence of eigenfunction expansions, associated with a pair of ordinary differential expressions

Published online by Cambridge University Press:  14 November 2011

Earl A. Coddington
Affiliation:
Department of Mathematics, University of California, Los Angeles, Los Angeles, California 90024, U.S.A.
Aalt Dijksma
Affiliation:
Mathematisch Instituut, Rijksuniversiteit, Groningen, The Netherlands
Hendrik S. V. de Snoo
Affiliation:
Mathematisch Instituut, Rijksuniversiteit, Groningen, The Netherlands

Synopsis

For the differential equation Lf = λMf on an open interval of ℝ, a theory in terms of relations in a Hilbert space associated with M was developed in a paper by Coddington and de Snoo, and eigenfunction expansions were derived in a paper by Dijksma and de Snoo. In the case of a regular problem on a compact interval, pointwise convergence of the expansions was shown in another paper by Coddington and de Snoo. Here, we show pointwise convergence in the general singular case.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Coddington, E. A.. Extension theory of formally normal and symmetric subspaces. Mem. Amer. Math. Soc. 134 (1973).Google Scholar
2Coddington, E. A. and de Snoo, H. S. V.. Positive selfadjoint extensions of positive symmetric subspaces. Math. Z. 159 (1978), 203214.CrossRefGoogle Scholar
3Coddington, E. A. and de Snoo, H. S. V.. Differential subspaces associated with pairs of ordinary differential expressions. J. Differential Equations 35 (1980), 129182.CrossRefGoogle Scholar
4Coddington, E. A. and de Snoo, H. S. V.. Regular boundary value problems associated with pairs of ordinary differential expressions. Lecture Notes in Mathematics 858 (Berlin: Springer, 1981).Google Scholar
5Coddington, E. A. and Dijksma, A.. Adjoint subspaces in Banach spaces, with applications to ordinary differential subspaces. Ann. Mat. Pura Appl. 118 (1978), 1118.CrossRefGoogle Scholar
6Coppel, W. A.. Disconjugacy. Lecture Notes in Mathematics 220 (Berlin: Springer, 1971).Google Scholar
7Dijksma, A.. Eigenfunction expansions for a class of J-selfadjoint ordinary differential operators with boundary conditions containing the eigenvalue parameter. Proc. Roy. Soc. Edinburgh Sect. A 86 (1980), 127.CrossRefGoogle Scholar
8Dijksma, A. and de Snoo, H. S. V.. Self-adjoint extensions of symmetric subspaces. Pacific J. Math. 54 (1974), 71100.CrossRefGoogle Scholar
9Dijksma, A. and de Snoo, H. S. V.. Eigenfunction expansions associated with pairs of ordinary differential expressions, to appear.Google Scholar
10Dunford, N. and Schwartz, J. T.. Linear Operators, Part II (New York: Interscience, 1963).Google Scholar
11Hinton, D. B.. Eigenfunction expansions for a singular eigenvalue problem with eigenparameter in the boundary condition. SIAM J. Math. Anal. 12 (1981), 572584.CrossRefGoogle Scholar
12Krein, M. G.. Sur les développements des fonctions arbitraires en séries de fonctions fondamentales d'un problème aux limites quelconque. Mat. Sb. 2 (44) (1937), 923932.Google Scholar
13Langer, H. and Textorius, B.. On generalized resolvents and Q-functions of symmetric linear relations (subspaces) in Hilbert-space. Pacific J. Math. 72 (1977), 135165.CrossRefGoogle Scholar
14Langer, H. and Textorius, B.. A generalization of M. G. Krein's method of directing functionals to linear relations. Proc. Roy. Soc. Edinburgh Sect. A 81 (1978), 237246.CrossRefGoogle Scholar
15Langer, H. and Textorius, B.. Spectral functions of a symmetric linear relation with a directing mapping. I. Proc. Roy. Soc. Edinburgh Sect. A 97 (1984), 165176.CrossRefGoogle Scholar
16McKelvey, R.. Spectral measures, generalized resolvents and functions of positive type. J. Math. Anal. Appl. 11 (1965), 447477.CrossRefGoogle Scholar
17Schneider, A.. On spectral theory for the linear selfadjoint equation Fy = λGy. In “Ordinary and Partial differential Equations, Proceedings, Dundee, Scotland 1980”, pp. 306332. Lecture Notes in Mathematics 846 (Berlin: Springer, 1981).Google Scholar
18de Snoo, H. S. V.. Point-wise convergence of eigenfunction expansions, associated with ordinary differential operators. J. Math. Anal. Appl. 92 (1983), 172179.CrossRefGoogle Scholar