Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-10T19:37:20.876Z Has data issue: false hasContentIssue false

Rank-one convexity implies polyconvexity for isotropic, objective and isochoric elastic energies in the two-dimensional case

Published online by Cambridge University Press:  18 May 2017

Robert J. Martin
Affiliation:
Lehrstuhl für Nichtlineare Analysis und Modellierung, Fakultät für Mathematik, Universität Duisburg-Essen, Thea-Leymann Strasse 9, 45127 Essen, Germany (robert.martin@uni-due.de)
Ionel-Dumitrel Ghiba
Affiliation:
Lehrstuhl für Nichtlineare Analysis und Modellierung, Fakultät für Mathematik, Universität Duisburg-Essen, Thea-Leymann Strasse 9, 45127 Essen, Germany, Department of Mathematics, Alexandru Ioan Cuza University of Iaşi, Blvd Carol I, no. 11, 700506 Iaşi, Romania and Octav Mayer Institute of Mathematics of the Romanian Academy, Iaşi Branch, 700505 Iaşi, Romania (dumitrel.ghiba@uni-due.de; dumitrel.ghiba@uaic.ro)
Patrizio Neff
Affiliation:
Lehrstuhl für Nichtlineare Analysis und Modellierung, Fakultät für Mathematik, Universität Duisburg-Essen, Thea-Leymann Strasse 9, 45127 Essen, Germany (patrizio.neff@uni-due.de)

Extract

We show that, in the two-dimensional case, every objective, isotropic and isochoric energy function that is rank-one convex on GL+(2) is already polyconvex on GL+(2). Thus, we answer in the negative Morrey's conjecture in the subclass of isochoric nonlinear energies, since polyconvexity implies quasi-convexity. Our methods are based on different representation formulae for objective and isotropic functions in general, as well as for isochoric functions in particular. We also state criteria for these convexity conditions in terms of the deviatoric part of the logarithmic strain tensor.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)