Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-13T03:13:14.733Z Has data issue: false hasContentIssue false

Second-order differential equations with random perturbations and small parameters

Published online by Cambridge University Press:  05 July 2017

M. Kamenskii
Affiliation:
Voronezh State University, Universitetskay pl. 1, 394063 Voronezh, Russia (mikhailkamenski@mail.ru)
S. Pergamenchtchikov
Affiliation:
Laboratoire de Mathématiques Raphael Salem, CNRS–UMR 6085, Université de Rouen, Avenue de l'Université, BP.12, Technopôle du Madrillet F76801, Saint-Étienne-du-Rouvray, France (serge.pergamenchtchikov@univ-rouen.fr) and International Laboratory of Statistics of Stochastic Processes and Quantitative Finance, National Research Tomsk State University, Russia
M. Quincampoix
Affiliation:
Laboratoire de Mathématiques de Bretagne Atlantique, CNRS–UMR 6205, Université de Bretagne Occidentale, 6 avenue Victor Le Gorgeu, CS 93837, 29238 Brest Cedex 3, France (marc.quincampoix@univ-brest.fr)

Extract

We consider boundary-value problems for differential equations of second order containing a Brownian motion (random perturbation) and a small parameter and prove a special existence and uniqueness theorem for random solutions. We study the asymptotic behaviour of these solutions as the small parameter goes to zero and show the stochastic averaging theorem for such equations. We find the explicit limits for the solutions as the small parameter goes to zero.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)