Article contents
Self-induced compactness in Banach spaces
Published online by Cambridge University Press: 14 November 2011
Extract
We consider the question: is every compact set in a Banach space X contained in the closed unit range of a compact (or even approximable) operator on X? We give large classes of spaces where the question has an affirmative answer, but observe that it has a negative answer, in general, for approximable operators. We further construct a Banach space failing the bounded compact approximation property, though all of its duals have the metric compact approximation property.
- Type
- Research Article
- Information
- Proceedings of the Royal Society of Edinburgh Section A: Mathematics , Volume 126 , Issue 2 , 1996 , pp. 355 - 362
- Copyright
- Copyright © Royal Society of Edinburgh 1996
References
2Bonsall, F. F. and Duncan, J.. Complete Nnrmed Algebras (Berlin: Springer. 1973).CrossRefGoogle Scholar
3Cho, C. and Johnson, W. B.. A characterization of subspaces X and lp for which K(X) is an M-ideai in L(X). Proc. Amer. Math. Soc. 93 (1985). 466–70.Google Scholar
4Cohen, P. J.. Factorization in group algebras. Duke Math. J. 26 (1959).199–205.CrossRefGoogle Scholar
5Dales, H. G. and Jarchow, H.. Continuity of homomorphisms and derivations from algebras ofapproximablc and nuclear operators. Math. Proc. Cambridge Philos. Soc. 116 (1994). 465–73.CrossRefGoogle Scholar
6Dixon, P. G.. Left approximate identities in algebras of compact operators on Banach spaces. Proc. Ray. Soc. Edinburgh Sea. A 104 (1986), 169–75.CrossRefGoogle Scholar
7Grønbæk, N. and Willis, G. A.. Approximate identities in the Banach algebras of compact operators. Canad. Math. Bull 36 (1993). 45–53.CrossRefGoogle Scholar
8Grothendieck, A.. Produits tensoriels topologies et espaces nucléates. Mem. Amer. Math. Soc. 16(1955).Google Scholar
10Johnson, W. B.. A complementary universal conjugate Banach space and its relation to the approximation problem. Israel J. Math. 13 (1972). 301–10.CrossRefGoogle Scholar
11Lindenstrauss, J. and Tzafriri, L.. Classical Banach Spaces I, Sequence Spaces, Results in Mathematics and Related Areas 92 (Berlin: Springer, 1977).Google Scholar
12Morell, J. S. and Retherford, J. R.. p-trivial Banach spaces. Stadia Math. 43 (1972), 1–25.CrossRefGoogle Scholar
13Pietsch, A.. Operator Ideals (VEB Deutscher Verlag der Wissenschaftens 1978; Amsterdam:North-Holland, 1980).Google Scholar
14Pisier, G.. Un théorème sur les opérateurs entre espaces de Banach qui se factorisenl par un espace de Hilbert. Ann. Sci. École Norm- Sup. 13 (1980), 23–43.CrossRefGoogle Scholar
15Pisier, G.. Counterexample to a conjecture of Grothendicck. Acta Math. 151 (1983), 180–208.CrossRefGoogle Scholar
16Samuel, C-. Bounded approximate identities in the algebra of compact operators on a Banach space. Proc. Amer. Math. Soc. 117 (1993). 1093–6.CrossRefGoogle Scholar
17Selivanov, Y. V.. Homological characterizations of the approximation property for Banach spaces. Glasgow Math. J. 34 (1992), 229–39.CrossRefGoogle Scholar
18Szankowski, A.. Subspaces without the approximation property. Israel J. Math. 30 (1978), 123–9.CrossRefGoogle Scholar
19Willis, G. A.. The compact approximation property does not imply the approximation property. Studia Math. 103 (1992), 99–108.CrossRefGoogle Scholar
- 10
- Cited by