Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-26T18:56:01.583Z Has data issue: false hasContentIssue false

Spectral properties of compact multiparameter operators

Published online by Cambridge University Press:  14 November 2011

Paul Binding
Affiliation:
Department of Mathematics and Statistics, University of Calgary, Calgary, Alberta, Canada, T2N1N4
Patrick J. Browne
Affiliation:
Department of Mathematics and Statistics, University of Calgary, Calgary, Alberta, Canada, T2N1N4
Lawrence Turyn
Affiliation:
Department of Mathematics, Wright State University, Dayton, Ohio 45435, U.S.A.

Synopsis

Let

be, for each λ∈ℝk, a compact symmetric operator on a complex Hilbert space. Let the“fundamental” eigenset Z be denned by the relation λ∈Z if and only if W(λ) has maximal eigenvalue one. Conditions are given for Z to be the boundary of an open convex set P. A detailed investigation is given of the structure of P, including its recession cone and its representations as intersections of half-spaces.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Atkinson, F. V.. Multiparameter Eigenvalue Problems, Matrices and Compact Operators (New York: Academic Press, 1972).Google Scholar
2Binding, P.. Joint ranges of Hermitian forms, or Hopf maps revisited, (1981 preprint).Google Scholar
3Binding, P. and Browne, P. J.. A variational approach to multiparameter eigenvalue problems in Hilbert space. SIAM J. Math. Anal. 9 (1978), 10541067.CrossRefGoogle Scholar
4Binding, P. and Browne, P. J.. Spectral properties of two parameter eigenvalue problems. Proc. Roy. Soc. Edinburgh Sect. A 89 (1981), 157173.CrossRefGoogle Scholar
5Binding, P., Browne, P. J. and Turyn, L.. Existence conditions for two parameter eigenvalue problems. Proc. Roy. Soc. Edinburgh Sect. A 91 (1981), 1530.CrossRefGoogle Scholar
6Binding, P., Browne, P. J. and Turyn, L.. Existence conditions for eigenvalueproblems generated by compact multiparameter operators. Proc. Roy. Soc. Edinburgh Sect. A 96, 261274.CrossRefGoogle Scholar
7Hadeler, K. P.. Mehrparametrige und nichtlineare Eigenwertaufgaben. Arch. Rational Mech. Anal. 27 (1967), 306328.CrossRefGoogle Scholar
8Pell, A. J.. Linear equations with two parameters. Trans. Amer. Math. Soc. 23(1922), 198211.CrossRefGoogle Scholar
9Richardson, R. G. D.. Theorems of oscillation for two linear differential equations of the secondorder with two parameters. Trans. Amer. Math. Soc. 13 (1912), 2234.CrossRefGoogle Scholar
10Richardson, R. G. D.. Über die notwendig und hinreichenden Bedingungen für das Bestehen eines Kleinschen Oszillationstheorems Math. Ann. 73 (1912/1913), 289304.CrossRefGoogle Scholar
11Rockafellar, R. T.. Convex Analysis (Princeton University Press, 1970).CrossRefGoogle Scholar
12Turyn, L.. Sturm-Liouville problems with several parameters. J. Differential Equations 38 (1980), 239259.CrossRefGoogle Scholar