Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-28T03:31:30.299Z Has data issue: false hasContentIssue false

Sturmian theory for nonself-adjoint differential equations of second order

Published online by Cambridge University Press:  14 November 2011

E. Müller-Pfeiffer
Affiliation:
Pädagogische Hochschule “Dr. Th. Neubauer”, 5064 Erfurt, G.D.R.

Synopsis

The Sturm–Picone comparison theorem is extended to nonself-adjoint differential equations considered on non-compact intervals.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Ahlbrandt, C. D., Hinton, D. B., and Lewis, R. T.. The effect of variable change on oscillation and disconjugacy criteria with applications to spectral theory and asymptotic theory. J. Math. Anal. Appl. 81 (1981), 234277.CrossRefGoogle Scholar
2Boersma, J., Kaper, H. G. and Kwong, M. K.. Interlacing property of eigenvalues of Sturm-Liouville boundary value problems. Argonne National Laboratory, ANL–84–73 (1984), 5760.Google Scholar
3Hartman, P.. Ordinary Differential Equations (New York–London–Sydney: John Wiley, 1964).Google Scholar
4Kamke, E.. Differentialgleichungen reeller Funktionen (Leipzig: Geest & Portig, K.-G., 1950).Google Scholar
5Reid, W. T.. Sturmian theory for ordinary differential equations, Applied Mathematical Sciences 31 (New York-Heidelberg-Berlin: Springer, 1980).CrossRefGoogle Scholar
6Swanson, C. A.. Comparison and oscillation theory of linear differential equations (New York and London: Academic Press, 1968).Google Scholar