Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-13T13:43:32.815Z Has data issue: false hasContentIssue false

Travelling fronts in nonlocal models for phase separation in an external field*

Published online by Cambridge University Press:  14 November 2011

Enza Orlandi
Affiliation:
Dipartimento di Matematica, Università di Roma Tre, Via C.Segre 2, 00146 Rome, Italy e-mail: orlandi@matrm3.mat.uniroma3.it
Livio Triolo
Affiliation:
Dipartimento di Matematica, Università di Roma Tor Vergata, Via Della Ricerca Scientifica, 00133 Rome, Italy e-mail: triolo@mat.utovrm.it

Abstract

We consider the one-dimensional, nonlocal, evolution equation derived by De Masi et al. (1995) for Ising systems with Glauber dynamics, Kac potentials and magnetic field. We prove the existence of travelling fronts, their uniqueness modulo translations among the monotone profiles and their linear stability for all the admissible values of the magnetic field for which the underlying spin system exhibits a stable and metastable phase.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Bates, W., Fife, P., Ren, X. and Wang, X.. Traveling waves in a convolution model for phase transitions (Preprint, 1995).Google Scholar
2Comets, F.. Eisele, Th. and Schatzman, M.. On secondary bifurcations for some nonlinear convolution equations. Trans. Amer. Math. Soc. 296 (1986), 661702.CrossRefGoogle Scholar
3Passo, R. Dal and Mottoni, P. de. The heat equation with a nonlocal density dependent advection term (Preprint, 1991).Google Scholar
4Masi, A. De, Gobron, T. and Presutti, E.. Travelling fronts in non local evolution equations. Arch. Rational Mech. Anal. 132 (1995), 143205.CrossRefGoogle Scholar
5Masi, A. De, Orlandi, E., Presutti, E. and Triolo, L.. Glauber evolution with Kac potentials: I. Mesoscopic and macroscopic limits, interface dynamics. Nonlinearity 7 (1994), 633–96.CrossRefGoogle Scholar
6Masi, A. De, Orlandi, E., Presutti, E. and Triolo, L.. Stability of the interface in a model of phase separation. Proc. Roy. Soc. Edinburgh Sect. A 124 (1994), 1013–22.CrossRefGoogle Scholar
7Masi, A. De, Orlandi, E., Presutti, E. and Triolo, L.. Uniqueness of the instanton profile and global stability in non local evolution equations. Rend. Mat. 14 (1994), 693723.Google Scholar
8Ermentrout, G. B. and McLeod, J. B.. Existence and uniqueness of travelling waves for a neural network. Proc. Roy. Soc. Edinburgh Sect. A 123 (1993), 461–78.CrossRefGoogle Scholar
9Fife, P. and McLeod, J. B.. The approach of solutions of nonlinear diffusion equations to travelling front solutions. Arch. Rational Mech. Anal. 65 (1977), 335–61.CrossRefGoogle Scholar
10Kato, T.. Perturbation Theory for Linear Operators (Berlin: Springer, 1980).Google Scholar
11Lebowitz, J. L. and Penrose, O.. Rigorous treatment of the Van der Waals–Maxwell theory of the liquid vapour transition. J. Math. Phys. 7 (1966), 98113.CrossRefGoogle Scholar
12Nagel, R. (ed.). One-parameter Semigroups of Positive Operators, Lecture Notes in Mathematics 1184 (Berlin: Springer, 1984).Google Scholar
13Penrose, O.. A mean-field equation of motion for the dynamic Ising model. J. Stat. Phys. 63 (1991), 975–86.CrossRefGoogle Scholar
14Šmul'yan, Yu. L.. Completely continuous perturbations of operators. Amer. Math. Soc. Transl. Ser. 2 10(1958), 341–4.Google Scholar