Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-27T10:47:15.216Z Has data issue: false hasContentIssue false

VII.–The Effect of the Transport of Heat on the Rate of Evaporation of Small Droplets I. Evaporation into a Large Excess of a Gas

Published online by Cambridge University Press:  14 February 2012

P. G. Wright
Affiliation:
Department of Chemistry, Queen's College, Dundee.

Synopsis

Beginning with fundamental results obtained by Mason for the effect of self-cooling on the evaporation of drops, and by Fuchs for the diffusional retardation of evaporation for small droplets of any radius, explicit expressions for the effect of the transport of heat on the rate of quasi-stationary growth or evaporation, are discussed.

The simplest algebraic formulation of the results lends itself to interpretation as expressing a resistance to evaporation, the total resistance being the sum of four resistances in series. Two of these resistances, one to diffusion and one to the conduction of heat, are offered by the gaseous phase in bulk; and there are two corresponding resistances at the interface. Corrections are formulated for the effect of the heating of the droplet by radiation. These corrections may be expressed as a (finite) resistance in parallel with the other two resistances to the transfer of heat. Simplified equations are obtained for the evaporation of a liquid whose latent heat of vaporization is very large.

Some remarks are made on the formation of a monodisperse aerosol by the growth of smaller droplets. Integrated expressions are obtained for particular cases of the evaporation of a droplet over a finite period of time.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1962

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References to Literature

Birks, J., and Bradley, R. S., 1949. Proc. Roy. Soc, A, 198, 226.Google Scholar
Bradley, R. S., 1955. J. Colloid Sci., 10, 571.CrossRefGoogle Scholar
Bradley, R. S., Evans, M. G., and Whytlaw-Gray, R. W., 1946. Proc. Roy. Soc, A, 186, 368.Google Scholar
Chapman, S., and Cowling, T. G., 1952. Mathematical Theory of Non-Uniform Gases. 2nd Ed. Cambridge.Google Scholar
Frisch, H. L., and Collins, F. C., 1952. J. Chem. Phys., 20, 1797.CrossRefGoogle Scholar
Frisch, H. L., and Collins, F. C., 1953. J. Chem. Phys., 21, 2158.CrossRefGoogle Scholar
Fuchs, N. A., 1934. Phys. Z. Sowjet., 6, 225.Google Scholar
Fuchs, N. A., 1958. J. Tech. Phys., Moscow, 28, 159. (Engl. trans. Sov. Phys.-Tech. Phys., 3, 140.)Google Scholar
Fuchs, N. A., 1960. Evaporation and Droplet Growth in Gaseous Media. (Engl. trans.) London.Google Scholar
Gatty, O., Frank, F. C., and Campbell, H., 1940. Quoted by Green and Lane (1957), PP. 8586.Google Scholar
Green, H. L., and Lane, W. R., 1957. Particulate Clouds, ch. 2, 3. London.Google Scholar
Guggenheim, E. A., 1940. Trans. Faraday Soc., 36, 397.CrossRefGoogle Scholar
Hertz, H., 1882. Ann. Phys. Lpz., 17, 177.CrossRefGoogle Scholar
Howell, W. E., 1949. J. Met., 6, 134.2.0.CO;2>CrossRefGoogle Scholar
Kantrowitz, A., 1951. J. Chem. Phys., 19, 1097.CrossRefGoogle Scholar
Kennard, E. H., 1938. Kinetic Theory of Gases. New York.Google Scholar
Knudsen, M., 1911. Ann. Phys. Lpz., 34, 593.CrossRefGoogle Scholar
Knudsen, M., 1915. Ann. Phys. Lpz., 47, 967.Google Scholar
Knudsen, M., 1934. Kinetic Theory of Gases. London.Google Scholar
Langmuir, I., 1913. Phys. Rev., 2, 329.CrossRefGoogle Scholar
Langmuir, I., 1944. Quoted by Howell (1949) and Mason (1951).Google Scholar
Langmuir, I., and Langmuir, D. B., 1927. J. Phys. Chem., 31, 1719.CrossRefGoogle Scholar
Langmuir, I., and Schaefer, V. J., 1943. J. Franklin Inst., 235, 119.CrossRefGoogle Scholar
Littlewood, R., and Rideal, E. K., 1956. Trans. Faraday Soc., 52, 1598.CrossRefGoogle Scholar
Mason, B. J., 1951. Proc. Phys. Soc. Lond., B, 64, 773.CrossRefGoogle Scholar
Mason, B. J., 1957. Physics of Clouds. Oxford.Google Scholar
Maxwell, J. C., 1877. Encycl. Brit., 9th ed., vol. 7, p. 218; Sci. Papers, vol. 2, p. 638. Cambridge.Google Scholar
Reiss, H., 1951. J. Chem. Phys., 19, 482.CrossRefGoogle Scholar
Schäfer, K., 1932. Z. Phys., 77, 198.CrossRefGoogle Scholar
Schäfer, K., Rating, W., and Eucken, A., 1942. Ann. Phys. Lpz., 42, 176.CrossRefGoogle Scholar
Sinclair, D., and Lamer, V. K., 1949. Chem. Rev., 44, 245.CrossRefGoogle Scholar
V. Smoluchowski, M., 1898. Ann. Phys. Lpz., 64, 101.CrossRefGoogle Scholar
V. Smoluchowski, M., 1899. S. B. Akad. Wiss. Wien, 108, 5.Google Scholar
Stefan, J., 1881. S. B. Akad. Wiss. Wien, 83, 943.Google Scholar
Welander, P., 1954. Ark. Fys., 7, 507.Google Scholar
Whytlaw-Gray, R. W., and Patterson, H. S., 1932. Smoke, p. 40. London.Google Scholar
Wright, P. G., 1960. Disc. Faraday Soc., 30, 100.CrossRefGoogle Scholar