Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-15T02:03:55.706Z Has data issue: false hasContentIssue false

Weak solutions to a hydrodynamic model for semiconductors: the Cauchy problem

Published online by Cambridge University Press:  14 November 2011

Pierangelo Marcati
Affiliation:
Dipartimento di Matematica Pura e Applicata, Università degli Studi dell'Aquila, I-67100 L'Aquila, Italy
Roberto Natalini
Affiliation:
Istituto per le Applicazioni del Calcolo “M. Picone”, Viale del Policlinico 137, I-00161 Roma, Italy

Abstract

We investigate the Cauchy problem for a hydrodynamic model for semiconductors. An existence theorem of global weak solutions with large initial data is obtained by using the fractional step Lax—Friedrichs scheme and Godounov scheme.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Ascher, U. M., Markowich, P. A., Pietra, P. and Schmeiser, C.. A phase plane analysis of transonic solutions for the hydrodynamic semiconductor model. Math. Mod. Math. Appl. Sci. 1 (3) (1991), 347376.CrossRefGoogle Scholar
2Chen, G.-Q.. Convergence of the Lax—Friedrichs scheme for isentropic gas dynamics (III). Acta Math. Sci. 6 (1986), 75120.CrossRefGoogle Scholar
3Chen, G.-Q.. The theory of compensated compactness and the system of isentropic gas dynamics (Preprint MCS-P154-0590, University of Chicago, 1990).Google Scholar
4Dafermos, C. M. and Hsiao, L.. Hyperbolic systems of balance law with inhomogeneity and dissipation. Indiana Univ. Math. J. 31 (1982), 471491.CrossRefGoogle Scholar
5Degond, P. and Markowich, P. A.. On a one-dimensional steady state hydrodynamic model for semiconductors. Appl. Math. Lett. 3 3 (1990), 2529.CrossRefGoogle Scholar
6Degond, P. and Markowich, P. A.. A steady-state potential flow model for semiconductors. (Submitted.)Google Scholar
7Ding, X., Chen, G.-Q. and Luo, P.. Convergence of the Lax—Friedrichs scheme for isentropic gas dynamics (I) (II). Acta Math. Sci. 5 (1985), 483500; 501–540.Google Scholar
8Ding, X., Chen, G.-Q. and Luo, P.. A supplement to the papers ‘Convergence of Lax—Friedrichs scheme for isentropic gas dynamics (II) (III)’. Acta Math. Sci. 7 (1987), 467480.Google Scholar
9Ding, X., Chen, G.-Q. and Luo, P.. Convergence of the fractional step Lax—Friedrichs scheme and Godounov scheme for isentropic gas dynamics. Comm. Math. Phys. 121 (1989), 6384.Google Scholar
10Perna, R. J. Di. Convergence of approximate solutions of conservation laws. Arch. Rational Mech. Anal. 82 (1983), 2770.Google Scholar
11Perna, R. J. Di. Convergence of the viscosity method for isentropic gas dynamics. Comm. Math. Phys. 91 (1983), 130.Google Scholar
12Fatemi, E., Jerome, J. and Osher, S.. Solution of the hydrodynamic device model using high-order non-oscillatory shock capturing algorithms. IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems 10 (1991).CrossRefGoogle Scholar
13Gamba, I. M.. Stationary transonic solutions of a one-dimensional hydrodynamic model for semiconductors. Comm. Partial Differential Equations 17 (1992), 553577.Google Scholar
14Gamba, I. M.. Boundary layer formation for viscosity approximations in transonic flow. Phys. Fluids A 4 (1992), 486490.CrossRefGoogle Scholar
15Godounov, S. K.. A difference method for numerical calculation of discontinuous solutions of the equation of hydrodynamics. Math. Sb. 47 (89) (1959), 271306.Google Scholar
16Hsiao, L. and Marcati, P. A.. Nonhomogeneous quasilinear hyperbolic systems arising in Chemical Engineering. Ann. Scuola Norm. Sup. Pisa Cl. Sci. IV 15 (1) (1988), 6597.Google Scholar
17Kružkov, S. N.. First order quasilinear equations in several independent variables. Math. USSR Sb. 10 (2) (1970), 217243.CrossRefGoogle Scholar
18Lax, P. D.. Weak solutions of nonlinear hyperbolic equations and their numerical computation. Comm. Pure Appl. Math. 7 (1954), 159193.CrossRefGoogle Scholar
19Lax, P. D.. Shock waves and entropy. In Contributions to Nonlinear Functional Analysis, ed. Zarantonello, E., 603634 (New York: Academic Press, 1971).CrossRefGoogle Scholar
20Lax, P. D.. Hyperbolic systems of conservation laws and the mathematical theory of shock waves. Conf. Board Math. Sci. 11 (Philadelphia: SIAM, 1973).Google Scholar
21Lin, P.. Young measures and an application of compensated compactness to one-dimensionalnonlinear elastodynamics. Trans. Amer. Math. Soc. 329 (1992), 377398.CrossRefGoogle Scholar
22Marcati, P.. Approximate solutions to conservation laws via convective parabolic equations. Comm. Partial Differential Equations 13 (1988), 321344.CrossRefGoogle Scholar
23Markowich, P. A.. The Steady-State Semiconductor Device Equations (New York: Springer, 1986).CrossRefGoogle Scholar
24Markowich, P. A. and Pietra, P.. A non-isentropic Euler—Poisson model for a collisionless plasma. Math. Methods Appl. Sci. 16 (1993), 409442.CrossRefGoogle Scholar
25Markowich, P. A., Ringhofer, C. and Schmeiser, C.. Semiconductor Equations (New York: Springer, 1990).CrossRefGoogle Scholar
26Morawetz, C. S.. An alternative proof of Di Perna's theorem. Comm. Pure Appl.Math. 44 (1991), 10811090.CrossRefGoogle Scholar
27Murat, F.. L'injection du cone positif de H -1 dans W −1,q est copacte pour tout q < 2. J. Math. Pures Appl. 60 (1981), 309322.Google Scholar
28Rubino, B.. On the vanishing viscosity approximation to the Cauchy problem for a 2 × 2 system of conservation laws. Ann. Inst. H. Poincaré Anal. Non Linéaire 10 (1993), 627656.CrossRefGoogle Scholar
29Rubino, B.. Compactness framework and convergence of the Lax—Friedrichs and Godounov schemes for a 2 × 2 nonstrictly hyperbolic system of conservation laws. Quart. Appl. Math. (to appear).Google Scholar
30Serre, D.. La compacité par compensation pour les systèmes hyperboliques nonlinéaires de deux equations à une dimension d'espace. J. Math. Pures Appl. 9 sér 65 (1986), 432468.Google Scholar
31Smoller, J.. Shock Waves and Reaction-Diffusion Equations (New York: Springer, 1983).CrossRefGoogle Scholar
32Tartar, L.. Compensated compactness and applications to partial differential equations. In Research Notes in Mathematics, Nonlinear Analysis and Mechanics: Heriot—Watt Symposium, Vol. 4, ed. Knops, R.J., 136212 (New York: Pitman, 1979).Google Scholar
33Tartar, L.. The compensated compactness method applied to systems of conservation laws. In Systems of Nonlinear Partial Differential Equations, ed. Ball, J. M., NATO ASI Series (Dordrecht: Reidel, 1983).Google Scholar
34Ying, L. and Wang, C.. Global solutions of the Cauchy problem for a nonhomogeneous quasilinear hyperbolic system. Comm. Pure Appl. Math. 33 (1980), 579597.Google Scholar
35Ying, L. and Wang, C.. Solution in the large for nonhomogeneous quasilinear hyperbolic systems of equations. J. Math. Anal. 78 (1980), 440454.Google Scholar