No CrossRef data available.
Article contents
XV.—Theorems on the Convergence and Asymptotic Validity of Abel's Series*
Published online by Cambridge University Press: 14 February 2012
Synopsis
In this paper we discuss the Abel series for a function F(z) which is regular in an angle | arg z | ≤ α and at the origin. We investigate conditions under which the series converges and conditions under which its sum is asymptotically equivalent to the function F(z) in the half-plane R(z) > 0.
- Type
- Research Article
- Information
- Proceedings of the Royal Society of Edinburgh Section A: Mathematics , Volume 63 , Issue 3 , 1952 , pp. 222 - 231
- Copyright
- Copyright © Royal Society of Edinburgh 1952
References
REFERENCES TO LITERATURE
Buck, R. C., 1948. “Interpolation Series”, Trane. Amer. Math., LXIV (2), 283–298.CrossRefGoogle Scholar
Gelfond, A., 1938. “Interpolation et unicité des fonctions entiéres”, Rec. Math. (Mat. Sbornik), N.S., XLVI, 115–147.Google Scholar
Gontchaboff, W., 1935. “Sur la convergence de la série d'Abel”, Rec Math. (Mat. Sbornik), N.S., xlii, 473–483.Google Scholar
Halphen, G. H., 1881. “Sur une série d'Abel”, Bull, de la Soc. Math., x, 1881–1882, 67.Google Scholar
Macintyre, A. J., 1939. “Laplace's Transformation and Integral Functions”, Proc. London Math. Soc, (2), XLV, 1–20.CrossRefGoogle Scholar
Pflüger, A., 1935–1936. “Über eine Interpretation gewisser Konvergenz-und Fortsetzungseigenschaften Dirichletscher Reihen”, Comm. Math. Helv., VII (2), 89–129.CrossRefGoogle Scholar
Phragmèn, E., and Lindelöf, E., 1908. “Sur une extension d'un principe classique de l'analyse”, Acta Math., xxxi, 381–406.CrossRefGoogle Scholar
Polya, G., 1929. “Untersuchungen über Lücken und Singularitäten von Potenzreihen”, Math. Zeits., xxix, 549–640.CrossRefGoogle Scholar
Rabinovic, Yu. L., 1948. “Inversion Formulae for two kinds of Laplace Transform”, Doklady Akad. Nauk. S.S.S.B. (N.S.), LX, 969–972. (Russian.)Google Scholar