Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-10T13:48:54.428Z Has data issue: false hasContentIssue false

New Approaches to Treatment of Schizophrenia by Enhancing N-methyl-d-aspartate Neurotransmission

Published online by Cambridge University Press:  22 May 2007

Guochuan Emil Tsai
Affiliation:
Department of Psychiatry, Harbor-UCLA Medical Center, Torrance, CA, USA; Email: etsai@labiomed.org

Extract

ABSTRACT

Background: There is a great need to develop new antipsychotic agents. In addition to dopaminergic neurotransmission, glutamatergic neurotransmission has been implicated in the pathophysiology of schizophrenia. The most compelling link between glutamatergic N-methyl-d-aspartate (NMDA) neurotransmission and schizophrenia concerns the mechanism of action of the psychotomimetic drug phencyclidine and the dissociative anesthetic, ketamine; both are NMDA antagonists. The psychosis induced by the NMDA antagonists causes not only positive symptoms similar to the action of dopaminergic enhancers but also negative symptoms and cognitive deficits typical of schizophrenia in normal volunteers and worsening of the psychotic symptoms in patients with schizophrenia. Accordingly, enhancing NMDA neurotransmission should benefit the symptoms of schizophrenia. Methods: Most clinical trials were done by the addition of the NMDA-enhancing agents, glycine, d-serine, d-alanine, d-cycloserine and sarcosine to the stable regimens of antipsychotics in double-blind, placebo-controlled designs. Results: When taken together, the trials of NMDA-enhancing agents in patients with chronic schizophrenia receiving stable dose of antipsychotics, the NMDA-enhancing agents were effective in the domains of negative symptoms, cognition, depression, positive symptoms and general psychopathology. The agents also significantly improved extrapyramidal symptoms. No significant side-effects or safety concerns emerged. Interpretation: In addition to testing more lead compounds, dose-finding and long-term trials are required to determine the optimal dose and functional improvement capacity of NMDA receptor agonist. The agents may also be applied to prevention and the treatment for prodromal phases of the illness.

Type
Research Article
Copyright
© 2008 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Addington, A.M., Gornick, M., Sporn, A.L., Gogtay, N., Greenstein, D., Lenane, M., Gochman, P., Baker, N., Balkissoon, R., Vakkalanka, R.K., Weinberger, D.R., Straub, R.E., & Rapoport, J.L. (2004). Polymorphisms in the 13q33.2 gene G72/G30 are associated with childhood-onset schizophrenia and psychosis not otherwise specified. Biological Psychiatry, 55, 976980.Google Scholar
Bergeron, R., Meyer, T., Coyle, J., & Greene, R. (1998). Modulation of N-methyl-d-aspartate receptor function by glycine transport. Proceedings of the National Academy of Sciences of the United States of America, 95, 1573015734.Google Scholar
Breier, A., Buchanan, R.W., Kirkpatrick, B., Davis, O.R., Irish, D., Summerfelt, A., & Carpenter Jr., W.T. (1994). Effects of clozapine on positive and negative symptoms in outpatients with schizophrenia. American Journal of Psychiatry, 151, 2026.Google Scholar
Carpenter Jr., W.T., Buchanan, R.W., Javitt, D.C., Marder, S.R., Schooler, N.R., Heresco-Levy, U., & Gold, J.M. (2004). Is glutamatergic therapy efficacious in schizophrenia? Neuropsychopharmacology, 29, S110.Google Scholar
Cascella, N.G., Macciardi, F., Cavallini, C., & Smeraldi, E. (1994). d-cycloserine adjuvant therapy to conventional neuroleptic treatment in schizophrenia: an open-label study. Journal of Neural Transmission General Section, 95, 105111.Google Scholar
Chen, L., Muhlhauser, M., & Yang, C.R. (2003). Glycine transporter-1 blockade potentiates NMDA-mediated responses in rat prefrontal cortical neurons in vitro and in vivo. Journal of Neurophysiology, 89, 691703.Google Scholar
Chen, Y.S., Akula, N., Detera-Wadleigh, S.D., Schulze, T.G., Thomas, J., Potash, J.B., DePaulo, J.R., Mclnnis, M.G., Cox, N.J., & McMahon, L.F.J. (2004). Findings in an independent sample support an association between bipolar affective disorder and the G72/G30 locus on chromosome 13q33. Molecular Psychiatry, 9, 8792.Google Scholar
Chumakov, I., Blumenfeld, M., Guerassimenko, O., Cavarec, L., Palicio, M., Abderrahim, H., Bougueleret, L., Barry, C., Tanaka, H., La Rosa, P., Puech, A., Tahri, N., Cohen-Akenine, A., Delabrosse, S., Lissarrague, S., Picard, F.P., Maurice, K., Essioux, L., Millasseau, P., Grel, P., Debailleul, V., Simon, A.M., Caterina, D., Dufaure, I., Malekzadeh, K., Belova, M., Luan, J.J., Bouillot, M., Sambucy, J.L., Primas, G., Saumier, M., Boubkiri, N., Martin-Saumier, S., Nasroune, M., Peixoto, H., Delaye, A., Pinchot, V., Bastucci, M., Guillou, S., Chevillon, M., Sainz-Fuertes, R., Meguenni, S., Aurich-Costa, J., Cherif, D., Gimalac, A., Van Duijn, C., Gauvreau, D., Ouellette, G., Fortier, I., Raelson, J., Sherbatich, T., Riazanskaia, N., Rogaev, E., Raeymaekers, P., Aerssens, J., Konings, F., Luyten, W., Macciardi, F., Sham, P.C., Straub, R.E., Weinberger, D.R., Cohen, N., & Cohen, D. (2002). Genetic and physiological data implicating the new human gene G72 and the gene for d-amino acid oxidase in schizophrenia. Proceedings of the National Academy of Sciences of the United States of America, 99, 1367513680.Google Scholar
Costa, J., Khaled, E., Sramek, J., Bunney Jr., W., & Potkin, S.G. (1990). An open trial of glycine as an adjunct to neuroleptics in chronic treatment-refractory schizophrenics. Journal of Clinical Psychopharmacology, 10, 7172.Google Scholar
Davis, J.M., Chen, N., & Glick, I.D. (2003). A meta-analysis of the efficacy of second generation antipsychotics. Archives of General Psychiatry, 60, 553564.Google Scholar
Diaz, P., Bhaskara, S., Dursun, S.M., & Deakin, B. (2005). Double-blind, placebo-controlled, crossover trial of clozapine plus glycine in refractory schizophrenia negative results. Journal of Clinical Psychopharmacology, 25, 277278.Google Scholar
Duncan, E.J., Szilagyi, S., Schwartz, M.P., Bugarski-Kirola, D., Kunzova, A., Negi, S., Stephanides, M., Efferen, T.R., Angrist, B., Peselow, E., Corwin, J., Gonzenbach, S., & Rotrosen, J.P. (2004). Effects of d-cycloserine on negative symptoms in schizophrenia. Schizophrenia Research, 71, 239248.Google Scholar
Evins, A.E., Fitzgerald, S.M., Wine, L., Rosselli, R., & Goff, D.C. (2000). Placebo-controlled trial of glycine added to clozapine in schizophrenia. American Journal of Psychiatry, 157, 826828.Google Scholar
Evins, A.E., Amico, E., Posever, T.A., Toker, R., & Goff, D.C. (2002). d-cycloserine added to risperidone in patients with primary negative symptoms of schizophrenia. Schizophrenia Research, 56, 1923.Google Scholar
Gasquet, I., Haro, J.M., Novick, D., Edgell, E.T., Kennedy, L., & Lepine, J.P. (2005). Pharmacological treatment and other predictors of treatment outcomes in previously untreated patients with schizophrenia: results from the European Schizophrenia Outpatient Health Outcomes (SOHO) study. International Clinical Psychopharmacology, 20, 199205.Google Scholar
Goff, D.C., Tsai, G., Manoach, D.S., & Coyle, J.T. (1995). Dose-finding trial of d-cycloserine added to neuroleptics for negative symptoms in schizophrenia. American Journal of Psychiatry, 152, 12131215.Google Scholar
Goff, D.C., Tsai, G., Manoach, D.S., Flood, J., Darby, D.G., & Coyle, J.T. (1996). d-cycloserine added to clozapine for patients with schizophrenia. American Journal of Psychiatry, 153, 16281630.Google Scholar
Goff, D.C., Henderson, D.C., Evins, A.E., & Amico, E. (1999a). A placebo-controlled crossover trial of d-cycloserine added to clozapine in patients with schizophrenia. Biological Psychiatry, 45, 512514.Google Scholar
Goff, D.C., Tsai, G., Levitt, J., Amico, E., Manoach, D., Schoenfeld, D.A., Hayden, D.L., McCarley, R., & Coyle, J.T. (1999b). A placebo-controlled trial of d-cycloserine added to conventional neuroleptics in patients with schizophrenia. Archives of General Psychiatry, 56, 2127.Google Scholar
Goff, D.C., Herz, L., Posever, T., Shih, V., Tsai, G., Henderson, D.C., Freudenreich, O., Evins, A.E., Yovel, I., Zhang, H., & Schoenfeld, D. (2005). A six-month, placebo-controlled trial of d-cycloserine co-administered with conventional antipsychotics in schizophrenia patients. Psychopharmacology (Berlin), 179, 144150.Google Scholar
Good, K.P., Rabinowitz, J., Whitehorn, D., Harvey, P.D., & DeSmedt, G., & Kopala, L.C. (2004). The relationship of neuropsychological test performance with the PANSS in antipsychotic naive, first-episode psychosis patients. Schizophrenia Research, 68, 1119.Google Scholar
Green, M.F. (1996). What are the functional consequences of neurocognitive deficits in schizophrenia? American Journal of Psychiatry, 153, 321330.Google Scholar
Halberstadt, A.L. (1995). The phencyclidine-glutamate model of schizophrenia. Clinical Neuropharmacology, 18, 237249.Google Scholar
Harrison, P.J., & Owen, M.J. (2003). Genes for schizophrenia? Recent findings and their pathophysiological implications. Lancet, 361(Suppl. 9355), 417419.Google Scholar
Harrison, P.J., & Weinberger, D.R. (2005). Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence. Molecular Psychiatry, 10(Suppl. 1), 4068.Google Scholar
Hashimoto, A. (2002). Effect of the intracerebroventricular and systemic administration of l-serine on the concentrations of d- and l-serine in several brain areas and periphery of rat. Brain Research, 955, 214220.Google Scholar
Hashimoto, K., Fukushima, T., Shimizu, E., Komatsu, N., Watanabe, H., Shinoda, N., Nakazato, M., Kumakiri, C., Okada, S., Hasegawa, H., Imai, K., & Iyo, M. (2003). Decreased serum levels of d-serine in patients with schizophrenia: evidence in support of the N-methyl-d-aspartate receptor hypofunction hypothesis of schizophrenia. Archives of General Psychiatry, 60, 572576.Google Scholar
Hashimoto, K., Engberg, G., Shimizu, E., Nordin, C., Lindstrom, L.H., & Iyo, M. (2005). Reduced d-serine to total serine ratio in the cerebrospinal fluid of drug naive schizophrenic patients. Progress in Neuropsychopharmacol and Biological Psychiatry, 29, 767769.Google Scholar
Hattori, E., Liu, C., Badner, J.A., Bonner, T.I., Christian, S.L., & Maheshwari, M. (2003). Polymorphisms at the G72/G30 gene locus, on 13q33, are associated with bipolar disorder in two independent pedigree series. American Journal of Human Genetics, 72, 11311140.Google Scholar
Henderson, D.C. (2005). Schizophrenia and comorbid metabolic disorders. Journal of Clinical Psychiatry, 66(Suppl. 6), 1120.Google Scholar
Heresco-Levy, U., Javitt, D.C., Ermilov, M., Mordel, C., Horowitz, A., & Kelly, D. (1996). Double-blind, placebo-controlled, crossover trial of glycine adjuvant therapy for treatment-resistant schizophrenia. British Journal of Psychiatry, 169, 610617.Google Scholar
Heresco-Levy, U., Javitt, D.C., Ermilov, M., Silipo, G., & Shimoni, J. (1998). Double-blind, placebo-controlled, crossover trial of d-cycloserine adjuvant therapy for treatment-resistant schizophrenia. International Journal of Neuropsychopharmcology, 1, 131135.Google Scholar
Heresco-Levy, U., Javitt, D.C., Ermilov, M., Mordel, C., Silipo, G., & Lichtenstein, M. (1999). Efficacy of high-dose glycine in the treatment of enduring negative symptoms of schizophrenia. Archives of General Psychiatry, 56, 2936.Google Scholar
Heresco-Levy, U., Ermilov, M., Shimoni, J., Shapira, B., Silipo, G., & Javitt, D.C. (2002a). Placebo-controlled trial of d-cycloserine added to conventional neuroleptics, olanzapine, or risperidone in schizophrenia. American Journal of Psychiatry, 159, 480482.Google Scholar
Heresco-Levy, U., Kremer, I., Javitt, D.C., Goichman, R., Reshef, A., Blanaru, M., & Cohen, T. (2002b). Pilot-controlled trial of d-cycloserine for the treatment of post-traumatic stress disorder. International Journal of Neuropsychopharmacology, 5, 301307.Google Scholar
Heresco-Levy, U., Ermilov, M., Lichtenberg, P., Bar, G., & Javitt, D.C. (2004). High-dose glycine added to olanzapine and risperidone for the treatment of schizophrenia. Biological Psychiatry, 55, 165171.Google Scholar
Heresco-Levy, U., Javitt, D.C., Ebstein, R., Vass, A., Lichtenberg, P., Bar, G., Catinari, S., & Ermilov, M. (2005). d-serine efficacy as add-on pharmacotherapy to risperidone and olanzapine for treatment-refractory schizophrenia. Biological Psychiatry, 57, 577585.Google Scholar
Javitt, D.C., Zylberman, I., Zukin, S.R., Heresco-Levy, U., & Lindenmayer, J.P. (1994). Amelioration of negative symptoms in schizophrenia by glycine. American Journal of Psychiatry, 151, 12341236.Google Scholar
Javitt, D.C., Silipo, G., Cienfuegos, A., Shelley, A.M., Bark, N., Park, M., Lindenmayer, J.P., Suckow, R., & Zukin, S.R. (2001). Adjunctive high-dose glycine in the treatment of schizophrenia. International Journal of Neuropsychopharmacology, 4, 385391.Google Scholar
Javitt, D.C., Duncan, L., Balla, A., & Sershen, H. (2005). Inhibition of system A-mediated glycine transport in cortical synaptosomes by therapeutic concentrations of clozapine: implications for mechanisms of action. Molecular Psychiatry, 10, 275287.Google Scholar
Kinney, G.G., Sur, C., Burno, M., Mallorga, P.J., Williams, J.B., Figueroa, D.J., Wittmann, M., Lemaire, W., & Conn, P.J. (2003). The glycine transporter type 1 inhibitor N-[3-(4′-fluorophenyl)-3-(4′-phenylphenoxy)propyl]sarcosine potentiates NMDA receptor-mediated responses in vivo and produces an antipsychotic profile in rodent behavior. Journal of Neuroscience, 23, 75867591.Google Scholar
Korostishevsky, M., Kaganovich, M., Cholostoy, A., Ashkenazi, M., Ratner, Y., & Dahary, D. (2004). Is the G72/G30 locus associated with schizophrenia? Single nucleotide polymorphisms, haplotypes, and gene expression analysis. Biological Psychiatry, 56, 169176.Google Scholar
Korostishevsky, M., Kremer, I., Kaganovich, M., Cholostoy, A., Murad, I., Muhaheed, M., Bannoura, I., Rietschel, M., Dobrusin, M., Bening-Abu-Shach, U., Belmaker, R.H., Maier, W., Ebstein, R.P., & Navon, R. (2006). Transmission disequilibrium and haplotype analyses of the G72/G30 locus: suggestive linkage to schizophrenia in Palestinian Arabs living in the North of Israel. American Journal of Medical Genetics Part B Neuropsychiatric Genetics, 141, 9195.Google Scholar
Krystal, J.H., Karper, L.P., Seibyl, J.P., Freeman, G.K., Delaney, R., Bremner, J.D., Heninger, G.R., Bowers Jr., M.B., & Charney, D.S. Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Archives of General Psychiatry, 51, 199214.
Lahti, A.C., Koffel, B., LaPorte, D., & Tamminga, C.A. (1995). Subanesthetic doses of ketamine stimulate psychosis in schizophrenia. Neuropsychopharmacology, 13, 919.Google Scholar
Lane, H.Y., Chang, Y.C., Liu, Y.C., Chiu, C.C., & Tsai, G.E. (2005). Sarcosine or d-serine add-on treatment for acute exacerbation of schizophrenia: a randomized, double-blind, placebo-controlled study. Archives of General Psychiatry, 62, 11961204.Google Scholar
Lane, H.Y., Huang, C.L., Wu, P.L., Liu, Y.C., Chang, Y.C., Lin, P.Y., Chen, P.W., & Tsai, G. (2006a). Glycine transporter I inhibitor, N-methylglycine (sarcosine), added to clozapine for the treatment of schizophrenia. Biological Psychiatry, 60, 645649.Google Scholar
Lane, H.-Y., Liu, Y.C., Huang, C.-L., Chang, Y.-C., Liau, C.-H., & Tsai, G.E. (2007). Sarcosine (N-methylglycine) treatment for acute schizophrenia. Biological Psychiatry (In Press).Google Scholar
Lechner, S.M. (2006). Glutamate-based therapeutic approaches: inhibitors of glycine transport. Current Opinion in Pharmacology, 6, 7581.Google Scholar
Leiderman, E., Zylberman, I., Zukin, S.R., Cooper, T.B., & Javitt, D.C. (1996). Preliminary investigation of high-dose oral glycine on serum levels and negative symptoms in schizophrenia: an open-label trial. Biological Psychiatry, 39, 213215.Google Scholar
Malhotra, A.K., Pinals, D.A., Adler, C.M., Elman, I., Clifton, A., Pickar, D., & Breier, A. (1997). Ketamine-induced exacerbation of psychotic symptoms and cognitive impairment in neuroleptic-free schizophrenics. Neuropsychopharmacology, 17, 141150.Google Scholar
Milev, P., Ho, B.C., Arndt, S., & Andreasen, N.C. (2005). Predictive values of neurocognition and negative symptoms on functional outcome in schizophrenia: a longitudinal first-episode study with 7-year follow-up. American Journal of Psychiatry, 162, 495506.Google Scholar
Oldendorf, W.H. (1971). Brain uptake of radiolabeled amino acids, amines, and hexoses after arterial injection. American Journal of Physiology, 221, 16291639.Google Scholar
Olney, J.W., & Farber, N.B. (1995). Glutamate receptor dysfunction and schizophrenia. Archives of General Psychiatry, 52, 9981007.Google Scholar
Olney, J.W., Newcomer, J.W., & Farber, N.B. (1999). NMDA receptor hypofunction model of schizophrenia. Journal of Psychiatric Research, 33, 523533.Google Scholar
Posey, D.J., Kem, D.L., Swiezy, N.B., Sweeten, T.L., Wiegand, R.E., & McDougle, C.J. (2004). A pilot study of d-cycloserine in subjects with autistic disorder. American Journal of Psychiatry, 161, 21152117.Google Scholar
Potkin, S.G., Costa, J., Roy, S., Sramek, J., Jin, Y., & Gulasekaram, B. (1992). Glycine in the treatment of schizophrenia: theory and preliminary results. In: Meltzer, H.Y. (ed.), Novel Antipsychotic Drugs. New York: Raven Press, pp. 179188.
Potkin, S.G., Jin, Y., Bunney, B.G., Costa, J., & Gulasekaram, B. (1999). Effect of clozapine and adjunctive high-dose glycine in treatment-resistant schizophrenia. American Journal of Psychiatry, 156, 145147.Google Scholar
Ressler, K.J., Rothbaum, B.O., Tannenbaum, L., Anderson, P., Graap, K., Zimand, E., Hodges, L., & Davis, M. (2004). Cognitive enhancers as adjuncts to psychotherapy: use of d-cycloserine in phobic individuals to facilitate extinction of fear. Archives of General Psychiatry, 61, 11361144.Google Scholar
Robbins, T.W., & Murphy, E.R. (2006). Behavioural pharmacology: 40+ years of progress, with a focus on glutamate receptors and cognition. Trends in Pharmacological Science, 27, 141148.Google Scholar
Rosse, R.B., Theut, S.K., Banay-Schwartz, M., Leighton, M., Scarcella, E., Cohen, C.G., & Deutsch, S.I. (1989). Glycine adjuvant therapy to conventional neuroleptic treatment in schizophrenia: an open-label, pilot study. Clinical Neuropharmacology, 12, 416424.Google Scholar
Rosse, R.B., Fay-McCarthy, M., Kendrick, K., Davis, R.E., & Deutsch, S.I. (1996). d-cycloserine adjuvant therapy to molindone in the treatment of schizophrenia. Clinical Neuropharmacology 19, 444450.Google Scholar
Schumacher, J., Jamra, R.A., Freudenberg, J., Becker, T., Ohlraun, S., & Otte, A.C. (2004a). Examination of G72 and d-amino-acid oxidase as genetic risk factors for schizophrenia and bipolar affective disorder. Molecular Psychiatry, 9, 203207.Google Scholar
Schumacher, J., Jamra, R.A., Freudenberg, J., Becker, T., Ohlraun, S., Otte, A.C., Wang, X., He, G., Gu, N., Yang, J., Tang, J., & Chen, Q. (2004b). Association of G72/G30 with schizophrenia in the Chinese population. Biochemical and Biophysical Research Communication, 319, 12811286.Google Scholar
Simeon, J., Fink, M., Itil, T.M., & Ponce, D. (1970). d-cycloserine therapy of psychosis by symptom provocation. Comprehensive Psychiatry, 11, 8088.Google Scholar
Smith, K.E., Borden, L.A., Hartig, P.R., Branchek, T., & Weinshank, R.L. (1992). Cloning and expression of a glycine transporter reveal colocalization with NMDA receptors. Neuron, 8, 927935.Google Scholar
Thomson, A.M., Walker, V.E., & Flynn, D.M. (1989). Glycine enhances NMDA-receptor mediated synaptic potentials in neocortical slices. Nature, 338, 422424.Google Scholar
Tsai, G., & Coyle, J.T. (2001). Glutamatergic mechanisms in schizophrenia. Annual Review of Pharmacology and Toxicology, 42, 165179.Google Scholar
Tsai, G., Yang, P., Chung, L.C., Lange, N., & Coyle, J.T. (1998). d-serine added to antipsychotics for the treatment of schizophrenia. Biological Psychiatry, 44, 10811089.Google Scholar
Tsai, G., Falk, W., Gunther, G., & Coyle, J.T. (1999). d-cycloserine improves cognition of Alzheimer's disease. American Journal of Psychiatry, 156, 467469.Google Scholar
Tsai, G.E., Yang, P., Chung, L.C., Tsai, I.C., Tsai, C.W., & Coyle, J.T. (1999). d-serine added to clozapine for the treatment of schizophrenia. American Journal of Psychiatry, 156, 18221825.Google Scholar
Tsai, G., Lane, H.Y., Yang, P., Chong, M.Y., & Lange, N. (2004a). Glycine transporter I inhibitor, N-methylglycine (sarcosine) added to antipsychotics for the treatment of schizophrenia. Biological Psychiatry, 55, 452456.Google Scholar
Tsai, G., Ralph-Williams, R.J., Martina, M., Bergeron, R., Berger-Sweeney, J., Dunham, K.S., Jiang, Z., Caine, S.B., & Coyle, J.T. (2004b). Gene knockout of glycine transporter 1: characterization of the behavioral phenotype. Proceedings of the National Academy of Sciences of the United States of America, 101, 84858490.Google Scholar
Tsai, G.E., Yang, P., Chang, Y.C., & Chong, M.Y. (2006). d-alanine added to antipsychotics for the treatment of schizophrenia. Biological Psychiatry, 59, 230234.Google Scholar
van Berckel, B.N., Hijman, R., van der Linden, J.A., Westenberg, H.G., van Ree, J.M., & Kahn, R.S. (1996). Efficacy and tolerance of d-cycloserine in drug-free schizophrenic patients. Biological Psychiatry, 40, 12981300.Google Scholar
van Berckel, B.N., Evenblij, C.N., van Loon, B.J., Maas, M.F., van der Geld, M.A., Wynne, H.J., van Ree, J.M., & Kahn, R.S. (1999). d-cycloserine increases positive symptoms in chronic schizophrenic patients when administered in addition to antipsychotics: a double-blind, parallel, placebo-controlled study. Neuropsychopharmacology, 21, 203210.Google Scholar
Wang, X., He, G., Gu, N., Yang, J., Tang, J., & Chen, Q. (2004). Association of G72/G30 with schizophrenia in the Chinese population. Biochemical and Biophysical Research Communication, 319, 12811286.Google Scholar
Watson, G.B., Bolanowski, M.A., Baganoff, M.P., Deppeler, C.L., & Lanthorn, T.H. (1990). d-cycloserine acts as a partial agonist at the glycine modulatory site of the NMDA receptor expressed in Xenopus oocytes. Brain Research, 510, 158160.Google Scholar
Waziri, R. (1988). Glycine therapy of schizophrenia. Biological Psychiatry, 23, 210211.Google Scholar
Yurgelun-Todd, D.A., Coyle, J.T., Gruber, S.A., Renshaw, P.F., Silveri, M.M., Amico, E., Cohen, B., & Goff, D.C. (2005). Functional magnetic resonance imaging studies of schizophrenic patients during word production: effects of d-cycloserine. Psychiatry Research, 138, 2331.Google Scholar
Zafra, F., Aragon, C., Olivares, L., Danbolt, N.C., Gimenez, C., & Storm-Mathisen, J. (1995). Glycine transporters are differentially expressed among CNS cells. Journal of Neuroscience, 15, 39523969.Google Scholar