Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T11:59:46.816Z Has data issue: false hasContentIssue false

Schizophrénie: l’hypothèse dopaminergique à l’épreuve de la génétique moléculaire. Partie II

Published online by Cambridge University Press:  28 April 2020

D. Campion*
Affiliation:
CHSR, 4, rue Paul-Eluard, 76300 Sotteville-lès-Rouen, France
Get access

Résumé

Cet article étudie les principaux mécanismes de régulation de la transmission dopaminergique et s'efforce d’identifier les gènes dont la mutation serait susceptible d'altérer cette transmission.

Summary

Summary

In a first paper we have shown the advantage of the «genes candidate» method for identifying DNA sequences predisposing to schizophrenia. This strategy assumes precise knowledge of pathophysiological mechanism underlying the disease. We have discussed the presence of a dopaminergic transmission disturbance (hyper and/or hypodopaminergy) in schizophrenia. In this paper, we shall study in details the parameters regulating this transmission i.e. the number of available synapses in the brain, the functional state of dopaminergic synapses and the structure of circuitry in which dopaminergic neurons are inserted. For every parameter, we shall make a distinction between genetic and epigenetic regulating factors and we shall try to describe molecular mechanisms at work. The best candidates for a mutation are genes coding for proteins intervening in DA metabolism or synaptic physiology: tyrosine hydroxylase, MAO, D2 or D1 receptors, G proteins, DA reuptake molecular complex and cotransmitters as CCK. Heteroreceptors on pre- or post-synaptic side are especially important in modulation of DA transmission and are also candidate. Other genes are partially controlling ontogeny of dopaminergic systems and neuronal plasticity. These genes are still largely unknown but their study is in progress. It has been reported that schizophrenic brains display alterations in cell organisation. Mutation of these genes could be responsible for these changes.

Type
Article original
Copyright
Copyright © European Psychiatric Association 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Références

Albert, K.A.et al. (1984) Calcium/phospholipid dependant protein kinase (protein kinase C) phosphorylates and activivates tyrosine hydroxylase. Proc. Natl. Acad. Sci. USA 81, 77137717CrossRefGoogle Scholar
Agnati, L.F.et al. (1983) Differential modulation by CCK-8 ans CCK-4 of (3H) spiperone binding sites linked to DA and 5 HT receptors in the brain of the rat. Neurosci. Lett. 35, 179183CrossRefGoogle Scholar
Agnati, L.F., Fuxe, K., Benfenati, F. & Battistini, N. (1983) Neurotensin in vitro markedly reduces the affinity in subcortical limbic 3 H-N propylnorapomorphine binding sites. Acta Phys. Scand. 119, 459461CrossRefGoogle Scholar
Agnati, L.F., Fuxe, K.et al. (1985) Further evidence for the existence of interactions between receptors for DA and NT. DA reduces the affinity and inerease the number of 3 H NT binding sites in the subcortical limbic forebrain of the rat. Acta Phys. Scand. 124, 125128CrossRefGoogle Scholar
Bähler, M. & Greengard, P. (1987) Synapsin 1 bundles F actin in a phosphorylation dependant manner. Nature 326, 704707CrossRefGoogle Scholar
Baker, H., Joh, T. & Reis, D. (1980) Genetic control of number of midbrain dopaminergic neurons in inbred strains of mice: relationship to size and neuronal density of the striatum. Proc. Natl. Acad. Sci. USA 77 (7), 43694373CrossRefGoogle ScholarPubMed
Baker, H. & Joh, T.H. (1982) Time of appearence during development of differences in nigrostriatal tyrosine hydroxylase activity in two inbred mouse strains. Brain Res. 4, 157165CrossRefGoogle Scholar
Bannon, M. & Roth, R. (1983) Pharmacology of mesocortical DA neurons. Pharmacol. Rev. 35 (1), 5368Google Scholar
Baron, M. & Levitt, M. (1980) Platelet monamine oxidase activity: relation to genetic load of schizophrenia. Psych. Res. 3, 6974CrossRefGoogle Scholar
Baron, M., Levitt, M., Gruen, R., Kane, J. & Asnis, L. (1984) Platelet monoamine oxidase activity and genetic vulnerability to schizophrenia. Am. J. Psychiatry 141, 836842Google Scholar
Baron, M. (1986) Genetics of schizophrenia: II vulnerability traits and gene markers. Biol. Psychiatry 21, 11891211CrossRefGoogle ScholarPubMed
Baron, M., Rish, N., Levitt, M. & Gruen, R. (1985) Genetic analysis of platelet monoamine oxidase activity in families of schizophrenic patients. J. Psychol. Res. 19, 921CrossRefGoogle ScholarPubMed
Benes, F.M., Paskevich, P.A. & Domesick, V.B. (1982) Haloperidol induced plasticity of axon terminals in rat substantia nigra. Science 221, 969970CrossRefGoogle Scholar
Benes, F.M., Davidson, J. & Bird, E.D. (1986) Quantitative cytoarchitectural studies of the cerebral cortex of schizophrenics. Arch. Gen. Psychiatry 43, 3135CrossRefGoogle ScholarPubMed
Benes, F.M. & Bird, E.D. (1987) An analysis of the arrangement of neurons in the cingulate cortex of schizophrenic patients. Arch. Gen. Psychiatry 44, 608616CrossRefGoogle ScholarPubMed
Bjerkenstedt, L., Edman, G., Hagenfeldt, L., Sedvall, G. & Wiesel, A. (1985) Plasma amino acids in relation to CSF metabolites in schizophrenic patients and healthy Controls. Br. J. Psych. 147, 276282CrossRefGoogle ScholarPubMed
Black, I.B.et al. (1984) Neurotransmitter plasticity at the molecular level. Science 225, 12661270CrossRefGoogle ScholarPubMed
Blanc, G., Hervé, D., Simon, H, Lisoprawski, A., Glowinski, J. & Tassin, J.P. (1980) Responses to stress of mesocortico-frontal dopaminergic neurons in rats after long term isolation. Nature 284, 265267CrossRefGoogle Scholar
Boehme, R. & Ciaranello, R.D. (1981) DA receptor binding in inbred mice: strains differences in mesolimbic and nigrostriatal DA binding sites. Proc. Natl. Acad. Sci. USA 78, 32553259CrossRefGoogle Scholar
Boehme, R. & Ciaranello, R.D. (1982) Genetic control of DA and serotonin receptors in brain regions of inbred mice. Brain Res. 266, 5165CrossRefGoogle Scholar
Bogerts, B., Häntsch, J. & Herer, M. (1983) A morphometric study of the dopamine-containing cell groups in the mesencephalon of normals, Parkinson Patients, and schizophrenics. Biol. Psychiatry 18 (9), 951969Google ScholarPubMed
Bogerts, B., Meertz, E. & Schonfeedt-Bausch, R. (1985) Basal ganglia and limbic System pathology in schizophrenia. Arch. Gen. Psychiatry 42, 784791CrossRefGoogle Scholar
Buch-Fillenz, P.J. (1984) Pre-synaptic muscarinic receptors depress both release and synthesis of noradrenaline in rat hippocampus. J. Physiol. 346, 39Google Scholar
Campbell, G., Hardie, D.G. & Vulliet, P.R. (1986) Identification of four phosphorylation sites in the N-terminal region of tyrosine hydroxylase. J. Biol. Chem. 261 (23), 1048910492Google ScholarPubMed
Carter, C.J. & Pycock, C.J. (1980) Behavioural and biochemical effects of DA and NA depletion with in the medial pre-frontal cortex of the rat. Brain Res. 192, 163176CrossRefGoogle Scholar
Chang, S.L., Lotti, V.L., Martin, G.E. & Chen, T.B. (1983) Increase in brain 125 I CCK receptor binding following chronic haloperidol treatment, intracisternal 6 OH DA or ventral tegmental lesions. Life Sci. 32, 871878CrossRefGoogle ScholarPubMed
Chesselet, M.F. (1984) Presynaptic regulation of neurotransmitter release in the brain. Neuroscience 12 (2), 347375CrossRefGoogle Scholar
Cianarello, R.D. & Boehme, R. (1981) Genetic regulation of neurotransmitter enzymes and receptors: relationship to the inheritance of psychiatric disorders. Behav. Genet. 12 (1), 1135CrossRefGoogle Scholar
Conrad, A. & Scheibel, A.B. (1987) Schizophrenia and the hippocampus: the embryological hypothesis extended. Schizophrenia Bull. 13, 577587CrossRefGoogle ScholarPubMed
Costentin, J. (1979) Les modulations de sensibilité des récepteurs DA dans le SNC; des paramètres importants dans la régulation de la fonction synaptique. Encéphale V, 121149Google Scholar
Coulombe, J.N. & Bronner-Fraser, M. (1986) Cholinergic neurones acquire adrenergic neurotransmetters when transplanted into an embryo. Nature 324, 569572CrossRefGoogle Scholar
Crawley, J.N., Hommer, D.W. & Skirboll, R. (1985) Topographical analysis of nucleus accumbens sites at which CCK potentiates DA induced hyperlocomotion in the rat. Brain Res. 335, 337341CrossRefGoogle ScholarPubMed
Crow, T.J.et al. (1979) Monoamine mechanisms in chronic schizophrenia: post mortem neurochemical findings. Brit. J. Psychiatry 134, 249256CrossRefGoogle ScholarPubMed
Cunningham, B.A., Hemperly, J.J., Murray, B.A., Prediger, E.A., Brackenbury, R. & Edelman, G.M. (1987) Neural cell adhesion molecule: structure, immnunoglobulin-like domains, cell surface modulation, and alternative RNA splicing. Science 236, 799805CrossRefGoogle Scholar
Dumbrille, Ross A. & Seeman, P. (1984) Da receptor elevation by CCK. Peptides 5, 12071212CrossRefGoogle Scholar
Duncavage, M., Luchins, D.J. & Meltzer, H.Y. (1982) Platelct MAO activity and family history of schizophrenia. Psychiatr. Res. Rep. 7, 4751CrossRefGoogle ScholarPubMed
Edelman, G.M. & Chuong, C.M. (1982) Embryonic to adult conversion of neural cell adhesion molecules in normal and staggerer mice. Proc. Natl. Acad. Sci. USA 79, 70367040CrossRefGoogle ScholarPubMed
Fadda, F., Gessa, G.L., Marcou, M., Mosca, E. & Rossetti, Z. (1984) Evidence for DA autoreceptors in mesocortical DA neurons. Brain Res. 293, 6772CrossRefGoogle Scholar
Faucon, Biguet N., Buda, M., Lamouroux, A., Samolyk, D. & Mallet, J. (1986) Time course of the change of T H mRNA in rat brain and adrenal medulla after a single injection of reserpine. EMBO J. 5 (2), 287291Google Scholar
Feigenbaum, J. & Yanai, J. (1984) Normal and abnormal determinants of DA receptor ontogeny in the central neurons System. Prog. Neurobiol. 23, 191225CrossRefGoogle Scholar
Feinberg, I. (1983) Schizophrenia: caused by fault in a programmed synaptic elimination during adolescence? J. Psychiatr. Res. 17, 319334CrossRefGoogle Scholar
Fink, S. & Reis, D. (1981) Genetic variations in midbrain dopamine cell number: parallel vvith differences in responses to dopaminergic agonists and in naturalistic behaviors mediated by central dopaminergic Systems. Brain Res. 222, 335349CrossRefGoogle Scholar
Fowler, J.S.et al. (1987) Mapping human brain MAO A et B with 11 C labeled suicide inactivators and PET. Science 235, 481485CrossRefGoogle Scholar
Fuxe, R., Agnati, L.F., Benfenati, F., Celani, M., Zini, I., Zoli, M. & Mutt, V. (1983) Evidence for existence of receptor - receptor interactions in the CNS - studies on the regulation of mono amine receptors by neuropeptides. J. Neural Transm. Suppl. 18, 165178Google Scholar
Gilad, G. & Reis, D. (1979) Collateral sprouting in central mesolimbic dopamine neurons: biochemical and immunocytochemical evidence of changes in the activity and distribution of TH in terminal and in cellbodies of A 10 neurons. Brain Res. 160, 1736CrossRefGoogle Scholar
Gnegy, N., Uzunov, P. & Costa, E. (1977) Participation of an endogenous Ca binding protein activator in the development of drug induced supersensitivity of striatal DA receptors. J. Phannacol. Ther. 202 (3), 558564Google Scholar
Greengard, P. (1976) Possible role for cyclic nucleotides and phosphorylated membrane proteins in post synaptic action of neurotransmitters. Nature 260, 101107CrossRefGoogle Scholar
Grima, B., Lamouroux, A., Blanot, F., Faucon, Biguet N. & Mallet, J. (1985) Complete coding sequence of rat tyrosine hydroxylase mRNA. Proc. Natl. Acad. Sci. USA 82, 617621CrossRefGoogle ScholarPubMed
Grima, B., Lamouroux, A., Boni, C., Julien, J.F., Agid, F.J. & Mallet, J. (1987) A single humain gene encoding multiples TH with different predicted functionnal charactcristics. Nature 326, 707711CrossRefGoogle Scholar
Hanbauer, I., Gimble, J. & Lovenberg, W. (1979) Changes in soluble calmodulin following activation of DA receptors in rat striatal slices. Neuropharmacology 18, 851857CrossRefGoogle Scholar
Haubauer, I., Pradhan, S. & Yang, H.Y.T. (1980) Role ol calmodulin in dopaminergic transmission. Ann. NY Acad. Sci. 292303CrossRefGoogle Scholar
Haracz, J. (1985) Neural plasticity in schizophrenia. Schizophr. Bull. 11 (2), 191229CrossRefGoogle Scholar
Hervé, D., Simon, H., Blanc, G., Lisoprowski, A., Le Moal, M., Glowinski, J. & Tassin, J.P. (1979) Increased utilization of DA in the nucleus accumbens but not in the cerebral cortex after dorsal raphe lesion in the rat. Neurosci. Lett. 15, 127133CrossRefGoogle Scholar
Hervé, D., Tassin, J.P., Barthélémy, C., Blanc, G., Lavielle, S. & Glowinski, J. (1979) Difference in the reactivity of the mesocortical dopaminergic neurons to stress in the Balb/C and C 57 BL/6 mice. Life Sci. 16591664CrossRefGoogle Scholar
Hervé, D., Blanc, G., Glowinski, J. & Tassin, J.P. (1981) Reduction of DA utilization in the prefrontal cortex but not in the nucleus accumbens after selective destruction of noradrenergic fibers innervating the ventral tegmental area in the rat. Brain Res. 237, 510516CrossRefGoogle Scholar
Hirata, F. & Axelrod, J. (1980) Phospholipid methylation and biological signal transmission. Science 209, 10821090CrossRefGoogle ScholarPubMed
Hommer, D.W., Pickar, D., Roy, A., Ninan, P., Boronow, J. & Paul, S.M. (1984) The effects of ceruletide in schizophrenia. Arch. Gen. Psychiatry 41, 617619CrossRefGoogle Scholar
Hussein, L., Sindarto, E. & Goedde, H.W. (1980) Twin studies and subtrate difference in platelet monoamine oxydase activity. Hum. Hered. 30, 6570CrossRefGoogle Scholar
Itoh, H.et al. (1986) Molecular cloning and sequence determination of cDNA for subunits of the guanine nucleotide binding proteins Gs, Gi and Gofrom rat brain. Proc. Natl. Acad. Sci. USA 83, 37763780CrossRefGoogle ScholarPubMed
Kemali, D., May, M., Ariano, M.G. & Salvati, A. (1985) Platelet MAO activity in schizophrenia, relation to genetic load of the illness and treatment with antipsychotic drugs. Encéphale XI, 3134Google Scholar
Kendler, K. & Davis, D. (1984) Genetic control of apomorphine induced climbing behavior in two inbred mouse strains. Brain Res. 293, 343351CrossRefGoogle ScholarPubMed
Kovelman, J.A. & Scheibel, A.B. (1984) A neurohistological correlate of schizophrenia. Biol. Psychiatry 19 (12), 16011620Google ScholarPubMed
Lavielle, S., Tassin, J.P., Thierry, A.M., Blanc, G., Hervé, D., Barthélémy, C. & Glowinski, J. (1978) Blockage by benzodiazepines of the selective high increase in dopamine turn over induced by stress in mesocortical dopaminergic neurons of the rat. Brain Res. 168, 585594CrossRefGoogle Scholar
Le Fur, G., Pliait, T., Canton, T., Tur, C. & Uzan, A. (1981) Evidence for a coupling between DA receptors and phospholipid methylation in mouse B lymphocytes. Life Sci. 29, 27372749CrossRefGoogle Scholar
Lisoprawski, A., Blanc, G. & Glowinski, J. (1981) Activation by stress of the habenulo - interpeduneular substance P neurons in the rat. Neurosci. Lett. 25, 4751CrossRefGoogle ScholarPubMed
Louilot, A., Simon, H., Taghzouti, K. & Le Moal, M. (1985) Modulation of DA activity in the nucleus accumbens following sollicitation or blockade of the dopaminergic transmission in the amygdala: a study by in vivo differential puise voltametry. Brain Res. 346, 141145CrossRefGoogle Scholar
Markstein, R. & Hôkfeld, J. (1984) Effect of CCK octapeptide on DA release from slices of cat caudate nucleus. J. Neurosci. 4 (2), 570575CrossRefGoogle Scholar
Memo, M., Kleinman, J.E. & Hanbauer, I. (1983) Coupling of dopamine D1 recognition sites with adenylate cyclase in nuclei accumbens and caudatus of schizophrenics. Science 221, 13041307CrossRefGoogle ScholarPubMed
Mestikawy, E.L., Glowinski, J. & Hamon, M. (1985) Tyrosine hydroxylase activation in depolarised dopaminergic terminais — Involvement of Ca + + dependant phosphorylation. Nature 302, 830832CrossRefGoogle Scholar
Michaluk, J.et al. (1982) DA receptors in the striatum and limbic system of various strains of mices: relation to dilferences in responses to apomorphine. Pharmacol. Biochem. Behav. 17, 11151118CrossRefGoogle Scholar
Miller, R.J. (1987) Multiple calcium channels and neuronal function. Science 235, 4652CrossRefGoogle ScholarPubMed
Milner, J.D. & Wurtman, R. (1985) Tyrosine availability determines stimulus evoked DA release front rat striatal slices. Neurosci. Lett. 59, 215220CrossRefGoogle Scholar
Moroji, T.et al. (1983) Antipsychotic effccts of ceruletide (coerulein) on chronic schizophrenia. Arch. Gen. Psychiatry 39, 485CrossRefGoogle Scholar
Moskowitz, N., Schook, W. & Puskin, S. (1982) Interaction ol brain synaptic vesicules induced by endogenous Ca++ dependant phospholipase A2. Science 216, 305307CrossRefGoogle Scholar
Muller, P. & Seeman, P. (1978) Dopaminergic supersensivity after neuroleptics: time course and specificity. Psychopharmacology 60, 111CrossRefGoogle Scholar
Nair, N.P.V., Bloom, D.M., Nestoros, J.N. & Schwartz, G. (1983) Therapeutic efficacity of CCK in neuroleptic resistant schizophrenic subjects. Psychopharmacol. Bull. 19 (1), 134136Google Scholar
Nestler, E., Walaas, I. & Greengard, P. (1984) Neuronal phosphoproteins: physiological and clinical implications. Science 225, 13571364CrossRefGoogle ScholarPubMed
Nies, A.et al. (1973) Genetic control of platelet and plasma MAO activity. Arch. Gen. Psychiatry 28, 834 838CrossRefGoogle Scholar
Nybäck, H, Berggren, B.M., Hindmarsh, T., Sedvall, G. & Wiesel, F.A. (1983) Cerebroventricular size and cerebrospinal fluid monoamine metabolites in schizophrenic patients and healthy volunteers. Psych. Res. 9, 301308CrossRefGoogle ScholarPubMed
O'Carrol, A.M., Fowler, C.J., Phillips, J.P., Tobbia, I. & Tipton, K.F. (1983) The deamination of dopamine by human brain monoamine oxidase: specificity for the two enzymes forms in seven brain regions. Naunyn-Schmiedeberg's Arch. Pharmacol. 322, 198202CrossRefGoogle Scholar
Pandey, G., Dorus, E., Shanghnessy, R. & Davis, J.M. (1979) Genetic control of platelet MAO activity: studies on normal families. Life Sci. 25, 11731178CrossRefGoogle ScholarPubMed
Pintar, J.E.et al. (1981) Gene for monoamine oxidase type A assigned to the human X chromosome. J. Neurosci. 1, 2, 166175CrossRefGoogle Scholar
Potkin, S.G., Camion, Spoor E., De Lisi, L.E., Neckers, L.M. & Wyatt, R.J. (1983) Plasma phenylalanine, tyrosine and tryptophan in schizophrenia. Arch. Gen. Psychiatry 40, 749752CrossRefGoogle Scholar
Pycock, C.J., Carter, C.J. & Kerwin, R.W. (1986) Effect of 6 OH DA lesion in the medial pre-frontal cortex on neurotransmitter systems in sub-cortical sites in the rat. J. Neurochemistry 34 (1), 9199CrossRefGoogle Scholar
Quirion, R. (1983) Interactions between NT and DA in the brain: an overwiew. Peptides 4, 609615CrossRefGoogle Scholar
Rebec, G. (1984) Auto and post synaptic DA receptors in the CNS. Monogr. Neural Sci. 10, 207223Google Scholar
Reches, A., Wagner, R.H., Jackson, V., Yablonskaya-Alter, E., Fahn, S. (1983) DA receptors in the denervated striatum: further supersensitivity by chronic haloperidol treatment. Brain Res. 275, 183185CrossRefGoogle Scholar
Reibaud, M., Blanc, G., Studler, J.M., Glowinski, J. & Tassin, J.P. (1984) Non DA préfronto cortical efferents modulate DA receptors in the nucleus accumbens. Brain Res. 305, 4550CrossRefGoogle ScholarPubMed
Reveley, M.A., Glover, V., Sandler, M. & Spokes, E.G. (1981) Brain MAO activity in schizophrenics and Controls. Arch. Gen. Psychiatry 38, 663665CrossRefGoogle ScholarPubMed
Reveley, M.A., Reveley, A.M., Clifford, C.A. & Murray, R.M. (1983) Genetics of platelet MAO activity in discordant schizophrenic and normal twins. Br. J. Psychiatry 142, 560565CrossRefGoogle ScholarPubMed
Rice, J., Mc, Guffin P., Goldin, L.R., Shaskan, E.G. & Gershon, E.S. (1984) Platelet monoamine oxidase activity: evidence for a single major locus. Am. J. Hum. Genet. 36, 3643Google ScholarPubMed
Rieder, R.S. & Cershon, C.S. (1978) Genetic strategies in biological psychiatry. Arch. Gen. Psychiatry 35, 866873CrossRefGoogle ScholarPubMed
Roth, R. (1984) CNS dopamine autoreceptors: distribution, pharmacology and function. Ann. N. Y. Acad. Sci. 430, 2753CrossRefGoogle ScholarPubMed
Sasaki, T. & Sato, M. (1987) A single GTP binding protein regulates K+ channels coupled vvith dopamine, histamine and Ach receptors. Nature 325, 259262CrossRefGoogle Scholar
Schmidt, M.J.et al. (1982) Dopamine deficiency in the weaver mutant mouse. J. Neurosci. 2, 3, 376380CrossRefGoogle Scholar
Schwartz, M.A., Aikens, A.M. & Wyatt, R.J. (1974) MAO activity in brains front schizophrenic and mentally normal individuals. Psychopharmacologia 38, 319328CrossRefGoogle Scholar
Severson, J.A., Randall, D.K. & Finch, E. (1981) Genotypic influences on striatal dopamincrgic regulation in mice. Brain Res. 210, 201215CrossRefGoogle Scholar
Spiegel, A.M., Gierschik, P., Levine, M.A. & Downs, R.W. (1985) Clinical implications of guanine nucleotide binding proteins as receptor effector couplers. N. Engl. J. Med., 2633Google ScholarPubMed
Tamminga, C.A., Littman, R.L., Alphs, L.D., Chase, T.N., Thaker, C.K. & Wagman, A.M. (1986) Neuronal cholecystokinin and schizophrenia : pathogenic and therapeutic studies. Psychopharmacology 88, 387391CrossRefGoogle ScholarPubMed
Tassin, J.P.et al. (1979) Collateral sprouting and reduced activity of the rat mesocortical dopaminergic neurons after selective destruction of the ascending noradrenergic bundles. Neurosci. 4, 1569 1582CrossRefGoogle ScholarPubMed
Tassin, J.P., Hervé, D., Blanc, G. & Glowinski, J. (1980) Differential effects of a two minute open field session on DA utilization in the frontal cortices of Balb/C and C 57 BL/6 mice. Neurosci. Lett. 17, 6771CrossRefGoogle Scholar
Tassin, J.P., Simon, H., Hervé, D., Blanc, G., Le Moal, M., Glowinski, J. & Bockaert, J. (1982) Non dopaminergic fibers may regulate DA sensitive adenylate cyclase in the prefrontal cortex and nucleus accumbens. Nature 295, 696698CrossRefGoogle Scholar
Tassin, J.P., Sudler, J.M., Hervé, D., Blanc, G. & Glowinski, J. (1986) Contribution of NA neurons to the regulation of DA (D 1) receptor denervation super-sensitivity in rat prefrontal cortex. J. Nettrochem. 46 (1), 243248CrossRefGoogle Scholar
Tassin, J.P. (1986) Dopamine et lobe frontal. Neuropsychiatry 7, 922Google Scholar
Thierry, A.M., Tassin, J.P., Blanc, G. & Glowinski, J. (1976) Selective activation of the mesocortical dopaminergic system by stress. Nature 263, 242244CrossRefGoogle ScholarPubMed
Vadasz, C., Baker, H., Joh, T.H., Lajtha, A. & Reis, D.J. (1982) The inheritance and genetic correlation of tyrosine hydroxylase activities in the substantianigra and corpus striatum in the CxB recombinant inbred mouse strains. Brain Res. 234, 19CrossRefGoogle Scholar
Van, Kammen P., Van, Kammen V.B., Mann, L.S., Seppala, T. & Linnoila, M. (1986) Dopamine metabolism in the cerebrospinal fluid of drug free schizophrenic patients with and without cortical atrophy. Arch. Gen. Psychiatry 43, 978993Google Scholar
Van, Ree J.M., Gaffori, O. & de Wied, D. (1983) ln rats the behavioral profile of CCK 8 related peptides resembles that of antipsychotic agents. Eur. J. Pharmacol. 93, 6378CrossRefGoogle Scholar
Voigt, M.V. & Wang, R.Y. (1984) In vitro release of DA in the nucleus accumbens of the rat: modulation by CCK. Brain Res. 296, 189193CrossRefGoogle Scholar
Walaas, I., Aswad, D. & Greengard, P. (1983) A dopamine and AMPc regulated phosphoprotein enriched in DA innervated brain regions. Nature 301, 6971CrossRefGoogle Scholar
White, F. & Wang, R.Y. (1984) Interactions of CCK octapeptide and DA on nucleus accumbens neurons. Brain Res. 300, 161166CrossRefGoogle ScholarPubMed
Widerlöw, E.et al. (1982) Subnormal CSF levels of NT in a subgroup of schizophrenic patients: normalization after neuroleptic treatment. Am. J. Psychiatry 139 (9), 11221126Google Scholar
Wyatt, R., Steven, M.D., Potkin, G. & Murphy, D.L. (1979) Platelet mono amine oxidase activity in schizophrenia: a review of the data. Am. J. Psychiatry 136 (4A), 377385Google Scholar
Wyatt, R.D.et al. (1973) Reduced MAO activity in platelet: a possible genetic marker for vulnerability to schizophrenia. Science 173, 916918CrossRefGoogle Scholar
Yamauchi, T. & Fujisawa, H. (1979) In vitro phosphorylation of bovine adrenal TH by AMPc dependant protein. J. Biol. Chem. 254, 503507Google Scholar
Young, W.J., Laws, E.R., Sharbrough, F.W, & Weinshilboum, R.M. (1986) Human mono amine oxidase, lack of brain platelet correlation. Arch. Gen. Psychiatry 43, 604609CrossRefGoogle Scholar
Submit a response

Comments

No Comments have been published for this article.