Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-27T23:48:57.093Z Has data issue: false hasContentIssue false

Clonidine infusion increases uptake of 99mTc-Exametazime in anterior cingulate cortex in Korsakoff's psychosis

Published online by Cambridge University Press:  09 July 2009

A. Moffoot
Affiliation:
MRC Brain Metabolism Unit, Royal Edinburgh Hospital, Edinburgh
R. E. O'Carroll
Affiliation:
MRC Brain Metabolism Unit, Royal Edinburgh Hospital, Edinburgh
C. Murray
Affiliation:
MRC Brain Metabolism Unit, Royal Edinburgh Hospital, Edinburgh
N. Dougall
Affiliation:
MRC Brain Metabolism Unit, Royal Edinburgh Hospital, Edinburgh
K. Ebmeier
Affiliation:
MRC Brain Metabolism Unit, Royal Edinburgh Hospital, Edinburgh
G. M. Goodwin*
Affiliation:
MRC Brain Metabolism Unit, Royal Edinburgh Hospital, Edinburgh
*
1Address for correspondence: Dr G. M. Goodwin, MRC Brain Metabolism Unit, Royal Edinburgh Hospital, Morningside Park, Edinburgh EH10 5HF.

Synopsis

The effects upon regional brain function of infusing either saline or clonidine (1·5μg/kg) has been examined in 18 patients with alcoholic Korsakoff's psychosis using 99mTc-hexamethylpropyleneamineoxime (99mTc-HMPAO or 99mTc-Exametazime) and Single Photon Emission Tomography (SPET or SPECT). The hypothesis tested was that frontal lobe function would be increased by adrenoceptor stimulation. This was confirmed by an increase in the uptake of 99mTc-Exametazime into anterior cingulate regions of the frontal lobes. Patients were scanned before and after saline or clonidine infusion during performance of a verbal fluency task. There was a significantly increased performance of verbal fluency in patients given clonidine. This effect was variable and could not be unequivocably distinguished from increases in performance in the saline treated group. Nevertheless, the increase in neuropsychological performance was also correlated with increased function in left dorsolateral frontal cortex within the clonidine treated group. An exploratory examination of other brain areas suggested that relative increases in posterior cingulate cortex and changes in the symmetry of function within the thalamus may also be produced by acute infusion of clonidine in Korsakoff patients. The findings support the idea that adrenergic mechanisms may modulate cognitive performance by actions on attentional systems within the brain. These appear to be located primarily within limbic cortex. It is, of course, notable that this can occur in patients with profound and disabling amnesia.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arnsten, A. F. & Goldman-Rakic, P. S. (1985). α2-Adrenergic mechanisms in prefrontal cortex associated with cognitive decline in aged nonhuman primates. Science 230, 12731276.CrossRefGoogle Scholar
Arnsten, A. F., Cai, J. X. & Goldman-Rakic, P. S. (1988). The α2 adrenergic agonist guanfasine improves memory in aged monkeys without sedative or hypotensive side effects: evidence for α2 receptor subtypes. Journal of Neuroscience 8, 42874298.CrossRefGoogle ScholarPubMed
Borkowski, J. G., Benton, A. L. & Spreen, O. (1967). Word fluency and brain damage. Neuropsychologia 5, 135140.CrossRefGoogle Scholar
Bowden, S. C. (1990). Separating cognitive impairment in neurologically asymptomatic alcoholism from Wernicke-Korsakoff syndrome: is the neuropsychological distinction justified? Psychological Bulletin 107, 355366.CrossRefGoogle ScholarPubMed
Burns, A., Philpot, M. P., Costa, D. C., Ell, P. J. & Levy, R. (1989). The investigation of Alzheimer's disease with single photon emission tomography. Journal of Neurology, Neurosurgery and Psychiatry 52, 248253.CrossRefGoogle ScholarPubMed
Coull, J. T., Middleton, H. C., Sahakian, B. J. & Robbins, T. W. (1992). Noradrenaline in the frontal cortex – attention and central executive function. Journal of Psychopharmacology 6, A24.Google Scholar
Ebmeier, K. P., Dougall, N. J., Austin, M.-P., Murray, C. L., Curran, S. M., O'Carroll, R., Moffoot, A. P. R., Hannan, J. & Goodwin, G. M. (1991). The split-dose technique for the study of psychological and pharmacological activation with the cerebral blood flow marker exametazime and single photon emission computed tomography (SPECT): reproducibility and rater reliability. International Journal of Methods in Psychiatric Research 1, 2738.Google Scholar
Ebmeier, K. P., Murray, C. L., Dougall, N. J., O'Carroll, R. E. & Goodwin, G. M. (1992). Unilateral voluntary hand movement and regional cerebral uptake of 99mTc-Exametazime in human control subjects. Journal of Nuclear Medicine 33, 16231627.Google ScholarPubMed
Frith, C. D., Dowdy, J., Ferrier, I. N. & Crow, T. J. (1985). Selective impairment of paired associate learning after administration of a centrally-acting adrenergic agonist (clonidine). Psychopharmacology 87, 490493.CrossRefGoogle ScholarPubMed
Frith, C. D., Friston, K. J., Liddle, P. F. & Frackowiak, R. S. J. (1991). A PET study of word finding. Neuropsychologia 29, 11371148.CrossRefGoogle ScholarPubMed
Goldenberg, G., Podreka, I., Steiner, M., Willmes, K., Suess, E. & Deecke, L. (1989). Regional blood flow patterns in visual imagery. Neuropsychologia 27, 641664.CrossRefGoogle ScholarPubMed
Goldman-Rakic, P. S., Lidow, M. S. & Gallager, D. W. (1990). Overlap of dopaminergic, adrenergic, and serotoninergic receptors and complementarity of their subtypes in primate prefrontal cortex. Journal of Neuroscience 10, 21252138.CrossRefGoogle ScholarPubMed
Hunter, R., McLuskie, R., Wyper, D., Patterson, J., Christie, J. E., Brooks, D. N., McCulloch, J., Fink, G. & Goodwin, G. M. (1989). The pattern of function-related regional cerebral blood flow investigated by single photon emission tomography with 99mTc-HMPAO in patients with presenile Alzheimer's disease and Korsakoff's psychosis. Psychological Medicine 19, 847855.CrossRefGoogle ScholarPubMed
Inugami, A., Kunno, I., Uemura, K., Shishido, F., Murakami, M., Tomura, N., Fujita, H. & Higano, S. (1988). Linearisation correction of Tc-labelled HMPAO image in terms of regional CBF distribution: comparison to C15O2, inhalation steady state method measured by positron emission tomography. Journal of Cerebral Blood Flow and Metabolism 8, S5260.CrossRefGoogle Scholar
Joyce, E. M. & Robbins, T. W. (1991). Frontal lobe function in Korsakoff and non-Korsakoff alcoholics – planning and spatial working memory. Neuropsychologia 29, 709723.CrossRefGoogle ScholarPubMed
McEntee, W. J. & Mair, R. G. (1978). Memory impairment in Korsakoff's psychosis: a correlation with brain noradrenergic activity. Science 202, 905907.CrossRefGoogle ScholarPubMed
McEntee, W. J. & Mair, R. G. (1990). The Korsakoff Syndrome: a neurochemical perspective. Trends in Neurosciences 13, 340344.CrossRefGoogle ScholarPubMed
McEntee, W. J., Mair, R. G. & Langlais, P. J. (1982). MHPG is always while HVA and 5-HIAA are often diminished in the CSF of patients with Korsakoff's psychosis. Neurology 32, A229.Google Scholar
Montaldi, D., Brooks, D. N., McColl, J. H., Wyper, D., Patterson, J., Barron, E. & McCulloch, J. (1990). Measurements of regional cerebral blood flow and cognitive performance in Alzheimer's disease. Journal of Neurology, Neurosurgery and Psychiatry 53, 3338.CrossRefGoogle ScholarPubMed
Moore, R. Y. & Bloom, F. E. (1979). Central catecholamine neuron systems: anatomy and physiology of the norepinephrine and epinephrine systems. Annual Review of Neuroscience 2, 113168.CrossRefGoogle ScholarPubMed
Neirinckx, R. D., Canning, L. R., Piper, I. M., Nowotnik, D. P.Pickett, R. D., Holmes, R. A., Volkert, W. A., Forster, A. M.Weisner, P. S., Marriott, J. A. & Chaplin, S. B. (1987). Technetium-99m D,1-HMPAO: a new radiopharmaceutical for SPECT imaging of regional cerebral blood perfusion. Journal of Nuclear Medicine 28, 191202.Google Scholar
O'Carroll, R. E., Moffoot, A., Ebmeier, K. P., Murray, C. & Goodwin, G. M. (1993). Korsakoff's syndrome, cognition and clonidine. Psychological Medicine 23, 341347.CrossRefGoogle ScholarPubMed
Petersen, S. E., Fox, P. T., Posner, M. I., Mintun, M. & Raichle, M. E. (1988). Positron emission tomographic studies of the cortica anatomy of single-word processing. Nature 331, 585589.CrossRefGoogle Scholar
Posner, M. I. & Petersen, S. E. (1990). The attention system of the human brain. Annual Review of Neuroscience 13, 2542.CrossRefGoogle ScholarPubMed
Posner, M. I., Petersen, S. E., Fox, P. T. & Raichle, M. E. (1988). Localization of cognitive operations in the human brain. Science 240, 16271631.CrossRefGoogle ScholarPubMed
Rakic, P., Goldman-Rakic, P. S. & Gallager, D. (1988). Quantitative autoradiography of major neurotransmitter receptors in the monkey striate and extrastriate cortex. Journal of Neuroscience 8, 36703690.CrossRefGoogle ScholarPubMed
Roth, M., Tym, E., Mountjoy, C. Q., Huppert, F. A., Hendrie, H., Verma, S. & Goddard, R. (1986). CAMDEX. A standardized instrument for the diagnosis of mental disorder in the elderly with special reference to the early detection of dementia. British Journal of Psychiatry 149, 698709.CrossRefGoogle Scholar
Segal, M. & Bloom, F. E. (1976). The action of norepinephrine in the rat hippocampus. IV. The effects of locus coeruleus stimulation on evoked hippocampal unit activity. Brain Research 107, 513525.CrossRefGoogle ScholarPubMed
Selden, N. R. W., Robbins, T. W. & Everitt, B. J. (1990). Enhanced behavioral conditioning to context and impaired behavioral and neuroendocrine responses to conditioned stimuli following ceruleocortical noradrenergic lesions: support for an attentional hypothesis of central noradrenergic function. Journal of Neuroscience 10, 531539.CrossRefGoogle ScholarPubMed
Shedlack, K. J., Hunter, R., Wyper, D., McLuskie, R., Fink, G. & Goodwin, G. M. (1991). The pattern of cerebral activity underlying verbal fluency shown by split-dose single photon emission tomography (SPET or SPECT) in normal volunteers. Psychological Medicine 21, 687696.CrossRefGoogle Scholar
Talairach, J., Zilkha, G., Tournoux, P., Prosalentis, A., Bordas-Ferrier, M., Covello, L., lacob, M. & Mempel, E. (1988). Atlas d' Anatomie Stéréotactique du Télencéphale. Masson: Paris.Google Scholar
Victor, M., Adams, R. D. & Collins, G. F. (1971). The Wernicke–Korsakoff Syndrome. Davis: Philadelphia, PA.Google ScholarPubMed
Waterhouse, B. D. & Woodward, D. (1980). Interaction of norepinephrine with cerebrocortical activity evoked by stimulation of somatosensory afferent pathways in the rat. Experimental Neurology 67, 1134.CrossRefGoogle ScholarPubMed
Woods, S. W., Hegeman, I. M., Zubal, I. G., Krystal, J. H., Roster, K., Smith, E. O., Heninger, G. R. & Hoffer, P. B. (1991). Visual stimulation increases technetium-99m-HMPAO distribution in human visual cortex. Journal of Nuclear Medicine 32, 210214.Google ScholarPubMed