Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T23:47:09.353Z Has data issue: false hasContentIssue false

A computerized magnetic resonance imaging study of corpus callosum morphology in schizophrenia

Published online by Cambridge University Press:  09 July 2009

P. W. R. Woodruff*
Affiliation:
Division of Psychiatric Neuro-Imaging, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, Maryland, USA
G. D. Pearlson
Affiliation:
Division of Psychiatric Neuro-Imaging, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, Maryland, USA
M. J. Geer
Affiliation:
Division of Psychiatric Neuro-Imaging, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, Maryland, USA
P. E. Barta
Affiliation:
Division of Psychiatric Neuro-Imaging, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, Maryland, USA
H. D. Chilcoat
Affiliation:
Division of Psychiatric Neuro-Imaging, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, Maryland, USA
*
1Address for correspondence: Dr P. W. R. Woodruff, Institute of Psychiatry, Dc Crespigny Park, Denmark Hill, London SE5 8AF.

Synopsis

The hypothesis tested was that, in schizophrenia, corpus callosum size would be reduced, particularly in the region responsible for communication between both temporal lobes. This is supported by knowledge of: (a) anatomical homotopicity and functional specialization of fibres within the corpus callosum; (b) evidence linking structural and functional deficits of the corpus callosum and left temporal lobe with schizophrenia; and (c) that temporal lobe neuronal fibres pass through the middle region of the corpus callosum. Brain area and corpus callosum areas, widths and length were measured on mid-sagittal MRI scans using a computer outlining method. Scans from 30 schizophrenics and 44 normal subjects were compared. Mid-sagittal brain area, corpus callosum area, length and anterior widths were reduced in the schizophrenic group compared with controls. A significant area difference between schizophrenics and controls was seen in the mid-corpus callosum which communicates between the temporal lobes, including the superior temporal gyri. In schizophrenics, corpus callosum area reduction was not accounted for by brain area shrinkage alone. Differences between the two groups were accounted for by comparisons between males only. These findings support the hypothesis and the possibility that localized abnormalities of bilaterally connected brain regions might have secondary effects on their homotopically distributed fibres within the corpus callosum.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Andreasen, N. C. (1984). The Scale for the Assessment of Positive Symptoms (SAPS). Iowa City, Iowa: University of Iowa.Google Scholar
Andreasen, N. C., Nasrallah, H. A., Dunn, V., Olson, S. C., Grove, W. M., Ehrhardt, J. C., Coffman, J. A. & Crossett, J. H. W. (1986). Structural abnormalities in the frontal system in schizophrenia. Archives of General Psychiatry 43, 137144.CrossRefGoogle ScholarPubMed
Andreasen, N. C., Ehrhardt, J. C., Swayze, V. W., Alliger, R. J., Yuh, W. T. C., Cohen, G. & Ziebell, S. (1990). Magnetic resonance imaging of the brain in schizophrenia: the pathophysiologic significance of structural abnormalities. Archives of General Psychiatry 47, 3544.Google Scholar
Barta, P. E., Pearlson, G. D., Powers, R. E., Richards, S. S. & Tune, L. E. (1990). Auditory hallucinations and smaller superior temporal gyral volume in schizophrenia. American Journal of Psychiatry 147, 14571462.Google ScholarPubMed
Beaumont, J. G. & Dimond, S. J. (1973). Brain disconnection and schizophrenia. British Journal of Psychiatry 123, 661662.CrossRefGoogle ScholarPubMed
Bigelow, L. B.Nasrallah, H. A. & Rauscher, F. P. (1983). Corpus callosum thickness in chronic schizophrenia. British Journal of Psychiatry 142, 284287.CrossRefGoogle ScholarPubMed
Brown, R., Colter, N., Corsellis, J. A. N., Crow, T. J., Frith, C. D., Jagoe, R., Johnstone, E. C. & Marsh, L. (1986). Postmortem evidence of structural brain changes in schizophrenia. Archives of General Psychiatry 43, 3642.CrossRefGoogle ScholarPubMed
Byrne, W., Bleier, R. & Houston, L. (1988). Variations in human corpus callosum do not predict gender: a study using magnetic resonance imaging. Behavioral Neuroscience 102, 222227.Google Scholar
Casanova, M. F., Sanders, R. D., Goldberg, T. E., Bigelow, L. B., Christison, G., Torrey, E. F. & Weinberger, D. R. (1990). Morphometry of the corpus callosum in monozygotic twins discordant for schizophrenia: a magnetic resonance imaging study. Journal of Neurology, Neurosurgery and Psychiatry 53, 416421.CrossRefGoogle ScholarPubMed
Chapman, L. T. & Chapman, J. P. (1987). The measurement of handedness. Brain and Cognition 6, 175183.CrossRefGoogle ScholarPubMed
Coger, R. W. & Serafetinides, E. A. (1990). Schizophrenia, corpus callosum, and inter-hemispheric communication: a review. Psychiatry Research 34, 163184.CrossRefGoogle Scholar
Cook, N. D. (1986). The Brain Code: Mechanisms of Information Transfer and the Role of the Corpus Callosum. Methuen: London.Google Scholar
Cooper, J. E., Andrews, H. & Barber, C. (1985). Stable abnormalities in the lateralisation of early cortical somatosensory evoked potentials in schizophrenic patients. British Journal of Psychiatry 146, 585593.CrossRefGoogle ScholarPubMed
Dauphinais, I. D., DeLisi, L. E., Crow, T. J., Alexandropoulos, K., Colter, N., Tuma, I. & Gershon, E. S. (1990). Reduction in temporal lobe size in siblings with schizophrenia: a magnetic resonance imaging study. Psychiatry Research: Neuroimaging 35, 137147.CrossRefGoogle ScholarPubMed
David, A. S. (1987). Tachistoscopic tests of colour naming and matching in schizophrenia: evidence for posterior callosal dysfunction? Psychological Medicine 17, 621630.CrossRefGoogle Scholar
De Lacoste-Utamsing, C. & Holloway, R. L. (1982). Sexual dimorphism in the human corpus callosum. Science 216, 14311432.Google Scholar
Demeter, S., Ringo, J. L. & Doty, R. W. (1988). Morphometric analysis of the human corpus callosum and anterior commissure. Human Neurobiology 6, 219226.Google Scholar
Dimond, S. J., Scammell, R. E., Brouwers, E. Y. M. & Weeks, R. (1977). Functions of the centre section (trunk) of the corpus callosum in man. Brain 100, 543562.CrossRefGoogle ScholarPubMed
Elliott, F. A. (1969). The corpus callosum, cingulate gyrus, septum pellucidum, septal area and fornix. In Handbook of Clinical Neurology, 2 (ed. Vinken, P. J. and Bruyn, G. W.), pp. 758775. North Holland: Amsterdam.Google Scholar
Fenwick, P., Brennan, D. & Philpot, M. (1983). Function of the corpus callosum in schizophrenia. British Journal of Psychiatry 143, 524.CrossRefGoogle ScholarPubMed
Fish, B. & Hagin, R. (1972). Visual-motor disorders in infants at risk for schizophrenia. Archives of General Psychiatry 27, 594598.CrossRefGoogle ScholarPubMed
Gazzaniga, M. S. & Freedman, H. (1973). Observations on visual processes after posterior callosal section. Neurology 23, 11261130.CrossRefGoogle ScholarPubMed
Gazzaniga, M. S., Risse, G. L., Springer, S. P., Clark, E., Wilson, A. B. & Wilson, D. H. (1975). Psychological and neurologic consequences of partial and complete cerebral commissurotomy. Neurology 25, 1015.CrossRefGoogle ScholarPubMed
Green, P. (1978). Defective interhemispheric transfer in schizophrenia. Journal of Abnormal Psychology 87, 472480.CrossRefGoogle ScholarPubMed
Gruzelier, J., Seymour, K., Wilson, L., Jolley, A. & Hirsch, S. (1988). Impairments on neuropsychologic tests of temporohippocampal and frontohippocampal functions and word fluency in remitting schizophrenia and affective disorders. Archives of General Psychiatry 45, 623629.Google Scholar
Gunther, W., Petsch, R., Steinberg, R., Moser, E., Streck, P., Heller, H., Kurtz, G. & Hippins, H. (1991). Brain dysfunction during motor activation and corpus callosum alterations in schizophrenia measured by cerebral blood flow and magnetic resonance imaging. Biological Psychiatry 29, 535553.Google Scholar
Harvey, I., Williams, M., Toone, B. K., Lewis, S. W., Turner, S. W. & McGuffin, P. (1990). The ventricular-brain (VBR) in functional psychosis: the relationship of lateral ventricular and total intracranial area. Psychological Medicine 20, 5562.CrossRefGoogle ScholarPubMed
Hatta, T., Yamamoto, M. & Kawabata, Y. (1984). Functional hemispheric differences in schizophrenia: interhemispheric transfer deficit or selective hemisphere dysfunction? Biological Psychiatry 19, 10271036.Google Scholar
Hauser, P., Dauphinais, D., Berrettini, W., DeLisi, L. E., Gelernter, J. & Post, R. M. (1989). Corpus callosum dimensions measured by magnetic resonance imaging in bipolar affective disorder and schizophrenia. Biological Psychiatry 26, 659668.Google Scholar
Hedreen, J. C. & Yin, T. C. T. (1981). Homotopic and heterotopic callosal afferents of caudal inferior parietal lobule in Macaca mulatto. Journal of Comparative Neurology 197, 605621.Google Scholar
Hollingshead, A. B. (1975). Four Factor Index of Social Status. Department of Sociology, Yale University: New Haven, CT.Google Scholar
Jacobson, S. & Marcus, E. M. (1970). The laminar distribution of the corpus callosum: a comparative study in the rat, cat, rhesus monkey and chimpanzee. Brain Research 24, 513520.CrossRefGoogle ScholarPubMed
Jeeves, M. A., Simpson, D. A. & Geffen, G. (1979). Functional consequences of the transcallosal removal of intraventricular tumours. Journal of Neurology, Neurosurgery, and Psychiatry 42, 134142.CrossRefGoogle ScholarPubMed
Johnstone, E. C., Owens, D. G. C., Crow, T. J., Frith, C. D., Alexandropoulis, K., Bydder, G. & Colter, N. (1989). Temporal lobe structure as determined by nuclear magnetic resonance in schizophrenia and bipolar affective disorder. Journal of Neurology, Neurosurgery and Psychiatry 52, 736741.Google Scholar
Jones, G. H. & Miller, J. J. (1981). Functional tests of the corpus callosum in schizophrenia. British Journal of Psychiatry 139, 553557.CrossRefGoogle ScholarPubMed
Kelsoe, J. R., Cadet, J. L., Pickar, D. & Weinberger, D. R. (1988). Quantitative neuroanatomy in schizophrenia. Archives of General Psychiatry 45, 533541.CrossRefGoogle ScholarPubMed
Lewis, S. W. & Mezey, C. (1985). Clinical correlates of septum pellucidum cavities: an unusual association with psychosis. Psychological Medicine 15, 112.CrossRefGoogle ScholarPubMed
Lewis, S. W., Reveley, M. A., David, A. S. & Ron, M. A. (1988). Agenesis of the corpus callosum and schizophrenia: a case report. Psychological Medicine 18, 341347.CrossRefGoogle ScholarPubMed
Matthew, R. J., Partain, C. L., Prakash, R., Kulkarni, M. V., Logan, T. P. & Wilson, W. H. (1985). A study of the septum pellucidum and corpus callosum in schizophrenia. Acta Psychiatrica Scandinavica 72, 414421.CrossRefGoogle Scholar
Merrin, E. L., Floyd, T. C. & Fein, G. (1989). EEG coherence in unmedicated schizophrenic patients. Biological Psychiatry 25, 6066.Google Scholar
Murray, R. M. & Lewis, S. W. (1987). Is schizophrenia a neurodevelopmental disorder? British Medical Journal 295, 681682.Google Scholar
Nasrallah, H. A., Andreasen, N. C., Coffman, J. A., Olson, S. C., Dunn, V. D., Erhardt, J. C. & Chapman, S. M. (1986). A controlled magnetic resonance imaging study of corpus callosum thickness in schizophrenia. Biological Psychiatry 21, 274282.CrossRefGoogle ScholarPubMed
Raine, A., Harrison, G. N., Reynolds, G. P., Sheard, C., Cooper, J. E. & Medley, I. (1990). Structural and functional characteristics of the corpus callosum in schizophrenics, psychiatric controls, and normal controls. Archives of General Psychiatry 47, 10601063.CrossRefGoogle ScholarPubMed
Rosenthal, R. & Bigelow, L. B. (1972). Quantitative brain measurements in chronic schizophrenia. British Journal of Psychiatry 121, 259264.CrossRefGoogle ScholarPubMed
Rossi, A., Stratta, P., Gallucci, M., Passariello, R. & Casacchia, M. (1988). Brain morphology in schizophrenia by magnetic resonance imaging. Acta Psychiatrica Scandinavica 77, 741745.CrossRefGoogle ScholarPubMed
Rossi, A., Stratta, P., Gallucci, M., Passariello, R. & Casacchia, M. (1989). Quantification of corpus callosum and ventricles in schizophrenia with nuclear magnetic resonance imaging: a pilot study. American Journal of Psychiatry 146, 99101.Google Scholar
Saykin, A. J., Gur, R. C., Gur, R. E., Mozley, P. D., Mozley, L. H., Resnick, S. M., Kester, B. & Stafiniak, P. (1991). Neuropsychological function in schizophrenia – selective impairment in memory and learning. Archives of General Psychiatry 48, 618624.CrossRefGoogle ScholarPubMed
Shagass, C., Josiassen, R. C., Roemer, R. A., Straumanis, J. J. & Slepner, S. M. (1983). Failure to replicate evoked potential observations suggesting corpus callosum dysfunction in schizophrenia. British Journal of Psychiatry 142, 471476.CrossRefGoogle ScholarPubMed
Shaw, J. G., Colter, N. & Resek, G. (1983). EEG coherence, lateral preference and schizophrenia. Psychological Medicine 13, 299306.CrossRefGoogle ScholarPubMed
Smith, R. & Tamminga, C. A. (1985). Brain imaging in psychiatry: new developments. Psychopharmacology Bulletin 21, 588594.Google Scholar
Smith, R. C., Calderon, M., Ravichandran, G. K., Largen, J., Vroulis, G., Shvartsburd, A., Gordon, J. & Schoolar, J. C. (1984). Nuclear magnetic resonance in schizophrenia: a preliminary study. Psychiatry Research 12, 137147.CrossRefGoogle ScholarPubMed
Smith, R. C., Baumgartner, R. & Calderon, M. (1987). Magnetic resonance imaging studies of the brains of schizophrenic patients. Psychiatry Research 20, 3346.Google Scholar
Sperry, R. (1982). Some effects of disconnecting the cerebral hemispheres. Science 217, 12231226.Google Scholar
Spitzer, R. L., Williams, J. B. W. & Gibbon, N. (1989). Structural Clinical Interview for DSM-UI-R. New York State Psychiatric Institute, Biometrics Research: New York.Google Scholar
Stratta, P., Rossi, A., Gallucci, M., Amicarelli, I., Passariello, R. & Casacchia, M. (1989). Hemispheric asymmetries and schizophrenia: a preliminary magnetic resonance imaging study. Biological Psychiatry 25, 275284.Google Scholar
Suddath, R. L., Christison, G. W., Torrey, E. F., Casanova, M. F. & Weinberger, D. R. (1990). Anatomical abnormalities in the brains of monozygotic twins discordant for schizophrenia. New England Journal of Medicine 322, 789794.CrossRefGoogle ScholarPubMed
Swayze, V. W., Andreasen, N. C., Ku, J. S. & Alliger, R. (1989). The corpus callosum in schizophrenia and mania: a controlled MRI study. Schizophrenia Research 2, 130.Google Scholar
Swayze, W., Andreasen, N. C., Erhardt, J. C., Yuh, W. T. C., Alliger, R. J. & Cohen, G. A. (1990). Development abnormalities of the corpus callosum in schizophrenia. Archives of Neurology 47, 805808.CrossRefGoogle ScholarPubMed
Uematsu, M. & Kaiya, H. (1988). The morphology of the corpus callosum in schizophrenia: an MRI study. Schizophrenia Research 1, 391398.Google Scholar
Witelson, S. F. (1989). Hand and sex differences in the isthmus and genu of the human corpus callosum. Brain 112, 799833.Google Scholar