Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-27T04:41:22.774Z Has data issue: false hasContentIssue false

The pattern of cerebral activity underlying verbal fluency shown by split-dose single photon emission tomography (SPET or SPECT) in normal volunteers

Published online by Cambridge University Press:  09 July 2009

K. J. Shedlack
Affiliation:
MRC Brain Metabolism Unit, Royal Edinburgh Hospital, Edinburgh; McLean Hospital, Harvard Medical School, Belmont, MA, USA: Wellcome Neuroscience Group, Institute of Neurological Sciences, Glasgow
R. Hunter
Affiliation:
MRC Brain Metabolism Unit, Royal Edinburgh Hospital, Edinburgh; McLean Hospital, Harvard Medical School, Belmont, MA, USA: Wellcome Neuroscience Group, Institute of Neurological Sciences, Glasgow
D. Wyper
Affiliation:
MRC Brain Metabolism Unit, Royal Edinburgh Hospital, Edinburgh; McLean Hospital, Harvard Medical School, Belmont, MA, USA: Wellcome Neuroscience Group, Institute of Neurological Sciences, Glasgow
R. McLuskie
Affiliation:
MRC Brain Metabolism Unit, Royal Edinburgh Hospital, Edinburgh; McLean Hospital, Harvard Medical School, Belmont, MA, USA: Wellcome Neuroscience Group, Institute of Neurological Sciences, Glasgow
G. Fink
Affiliation:
MRC Brain Metabolism Unit, Royal Edinburgh Hospital, Edinburgh; McLean Hospital, Harvard Medical School, Belmont, MA, USA: Wellcome Neuroscience Group, Institute of Neurological Sciences, Glasgow
G. M. Goodwin*
Affiliation:
MRC Brain Metabolism Unit, Royal Edinburgh Hospital, Edinburgh; McLean Hospital, Harvard Medical School, Belmont, MA, USA: Wellcome Neuroscience Group, Institute of Neurological Sciences, Glasgow
*
1 Address for correspondence: Dr G. M. Goodwin, MRC Brain Metabolism Unit, Royal Edinburgh Hospital, Morningside Park, Edinburgh EH10 5HF.

Synopsis

Uptake of 99mTc-Exametazime, a marker of relative regional cerebral blood flow has been determined with Single Photon Emission Tomography (SPET or SPECT) in 20 healthy, elderly female subjects during neuropsychological challenge. Each subject was studied under basal conditions after injection of 125 MBq 99mTc-Exametazime. Without moving the head of the subject, they were scanned again after injection of 375 MBq 99mTc-Exametazime. The second injection was made in 10 subjects during a test of verbal fluency, usually regarded as a test of the integrity of function of the left frontal cortex. In the other 10 subjects the second injection was made during simple verbalization (counting). This method of splitting the normal full dose of 99mTc-Exametazime allows a novel comparison between basal and active conditions for different brain regions. Verbal fluency was associated with reduced uptake bilaterally in the region of the basal ganglia and in left temporal (peri-sylvian) cortex when compared with calcarine cortex, an unstimulated reference sensory area. By contrast, counting produced relative activation, greatest in frontal and parietal areas. Thus, a clinically relevant neuropsychological test can be characterized metabolically by a pattern of regional brain activity, whose localization cannot readily be predicted from classical studies of brain lesions. Reduction of regional uptake may suggest an important role for de-activation or inhibition of function in human cognition. The involvement of basal ganglia and temporal areas is of particular interest in relation to the investigation of functional psychiatric illness.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andersen, A. R., Friberg, H., Schmidt, J. F. & Hasselbalch, S. G. (1988). Quantitative measurements of cerebral blood flow using SPECT and Tc-99m HMPAO compared to xenon-133. Journal of Cerebral Blood Flow and Metabolism 8, S6981.CrossRefGoogle ScholarPubMed
Borowski, J. G., Benton, A. L. & Spreen, O. (1967). Word fluency and brain damage. Neuropsychologia 5, 135140.CrossRefGoogle Scholar
Brodal, A. (1969). Neurological Anatomy in Relation to Clinical Medicine, 2nd edOxford University Press: Oxford.Google Scholar
Burns, A., Philpot, M. P., Costa, D. C., Ell, P. J. & Levy, R. (1989). The investigation of Alzheimer's disease with single photon emission tomography. Journal of Neurology, Neurosurgery and Psychiatry 52, 248253.CrossRefGoogle ScholarPubMed
Cummings, J. L. (1986). Subcortical dementia: neuropsychology, neuropsychiatry and pathophysiology. British Journal of Psychiatry 149, 682697.CrossRefGoogle ScholarPubMed
Franzen, G. & Ingvar, D. H. (1975). Absence of activation in frontal structures during psychological testing of chronic schizophrenics. Journal of Neurology, Neurosurgery and Psychiatry 38, 10271032.CrossRefGoogle ScholarPubMed
Goldenberg, G., Podreka, I., Steiner, M., Willmes, K., Suess, E. & Deecke, L. (1989). Regional blood flow patterns in visual imagery. Neuropsychologia 27, 641664.CrossRefGoogle ScholarPubMed
Homan, R. W., Paulman, R. G., SrDevous, M. D., Walker, P., Jennings, L. W. & Bonte, F. J. (1989). Cognitive function and regional cerebral blood flow in partial seizures. Archives of Neurology 46, 946970.CrossRefGoogle ScholarPubMed
Hunter, R., McLuskie, R., Wyper, D., Patterson, J., Christie, J. E., Brooks, D. N., McCulloch, J., Fink, G. & Goodwin, G. M. (1989). The pattern of function-related regional cerebral blood flow investigated by single photon emission tomography with 99mTc-HMPAO in patients with presenile Alzheimer's disease and Korsakoff's psychosis. Psychological Medicine 19, 847855.CrossRefGoogle ScholarPubMed
Inugami, A., Kanno, I., Uemura, K., Shishido, F., Murakami, M., Tomura, N., Fujita, H. & Higano, S. (1988). Linearisation correction of Tc-labelled HMPAO image in terms of regional CBF distribution: comparison to C15O2 inhalation steady state method measured by positron emission tomography. Journal of Cerebral Blood Flow and Metabolism 8, S5260.CrossRefGoogle Scholar
Kelly, P. A. T., Davis, C. J. & Goodwin, G. M. (1988). Differential effects of selective 5-HT1 agonists upon local cerebral glucose utilization and flow metabolism coupling in the rat. Neuroscience 25, 907915.CrossRefGoogle Scholar
Keppel, G. & Zedeck, S. (1989). Data Analysis for Research Designs. W. H. Freeman: New York.Google Scholar
Lassen, N. A., Andersen, A. R., Friberg, L. & Paulson, O. B. (1988). The retention of Tc99m D, 1-HMPAO in the human brain after intracarotid bolus injection: a kinetic analysis. Journal of Cerebral Blood Flow and Metabolism 8, S1322.CrossRefGoogle Scholar
Lear, J. L.(1988). Quantitative local cerebral blood flow measurements with Technetium-99m HM-PAO: evaluation using multiple radionuclide digital quantitative autoradiography. Journal of Nuclear Medicine 29, 13871392.Google ScholarPubMed
Mathew, R. J. (1989). Hyperfrontality of regional cerebral blood flow distribution in normals during resting wakefulness: fact or artifact? Biological Psychiatry 26, 717724.CrossRefGoogle ScholarPubMed
Mazziotta, J. C. & Koslow, S. H. (1987). Assessment of goals and obstacles in data acquisition and analysis from emission tomography: report of a series of international workshops. Journal of Cerebral Blood Flow and Metabolism 7, S131.CrossRefGoogle Scholar
Milner, B. (1964). Some effects of frontal lobotomy in man. In The Frontal Granular Cortex and Behavior (ed. Warren, J. M. and Ackert, K.), pp. 313334. McGraw-Hill: New York.Google Scholar
Mountz, J. M., Modell, J. G., Wilson, M. W., Curtis, G. C., Lee, M. A., Schmaltz, S. & Kuhl, D. E. (1989). Positron Emission Tomographic evaluation of cerebral blood flow during state anxiety in simple phobia. Archives of General Psychiatry 46, 501505.CrossRefGoogle ScholarPubMed
Neirinckx, R. D., Burke, J. F., Harrison, R. C., Forster, A. M., Andersen, A. R. & Lassen, N. A. (1988). The retention mechanism of Technetium-99m HMPAO: intracellular reaction with glutathione. Journal of Cerebral Blood Flow and Metabolism 8, S412.CrossRefGoogle ScholarPubMed
Neirinckx, R. D., Canning, L. R., Piper, I. M., Nowotnik, D. P., Pickett, R. D., Holmes, R. A., Volkert, W. A., Forster, A. M., Weisner, P. S., Marriott, J. A. & Chaplin, S. B. (1987). Technetium-99m D, 1-HMPAO: a new radiopharmaceutical for SPECT imaging of regional cerebral blood perfusion. Journal of Nuclear Medicine 28, 191202.Google Scholar
Parker, D. M., Crawford, J. R., Besson, J. A. O., Gemmell, H. G. & Sharp, P. F. (1989). Dementia: cerebral blood flow (SPECT) correlates of cognitive impairment. In Developments in Clinical and Experimental Neuropsychology (ed. Crawford, J. R. and Parker, D. M.), pp. 1525. Plenum Press: New York.CrossRefGoogle Scholar
Parks, R. W., Loewenstein, D. A., Dodrill, K. L., Barker, W. W., Yoshii, F., Chang, J. Y., Emran, A., Apicella, A., Sheramata, W. A. & Duara, R. (1988). Cerebral metabolic effects of a verbal fluency test: a PET scan study. Journal of Clinical and Experimental Neuropsychology 10, 565575.CrossRefGoogle Scholar
Petersen, S. E., Fox, P. T., Posner, M. I., Mintum, M. & Raichle, M. E. (1988). Positron emission tomographic studies of the cortical anatomy of single-word processing. Nature 331, 585589.CrossRefGoogle ScholarPubMed
Reiman, E. M., Fusselman, M. J., Fox, P. T. & Raichle, M. E. (1989). Neuroanatomical correlates of anticipatory anxiety. Science 243, 10711074.CrossRefGoogle ScholarPubMed
Roland, P. E. (1985). Cortical organisation of voluntary behaviour in man. Human Neurobiology 4, 155167.Google ScholarPubMed
Roland, P. E. (1987). In Motor Areas of the Cerebral Cortex (ed. Bock, G., O'Connor, M. and Marsh, J.). CIBA Foundation Symposium 132. John Wiley: Chichester.Google Scholar
Roland, P. E. & Friberg, L. (1988). The effect of the GABA-A agonist THIP on regional cortical blood flow in humans. A new test of hemispheric dominance. Journal of Cerebral Blood Flow and Metabolism 3, S244245.Google Scholar
Roland, P. E., Friberg, L., Lassen, N. A. & Olsen, T. S. (1985). Regional cortical blood flow changes during production of fluent speech and during conversation. Journal of Cerebral Blood Flow and Metabolism 5, S205206.Google Scholar
Roland, P. E., Eriksson, L., Stone-Elander, S. & Widen, L. (1987). Does mental activity change the oxidative metabolism of the brain? Journal of Neuroscience 7, 23732389.Google ScholarPubMed
Seitz, R. J., Roland, P. E., Bohm, C., Greitz, T., & Stone-Elander, S. (1990). Motor learning in man; a positron emission tomographic study. NeuroReport 1 (sampler) 1720.CrossRefGoogle Scholar
Sokoloff, L. (1981). Localisation of functional activity in the central nervous system by measurement of glucose utilisation with radioactive deoxyglucose. Journal of Cerebral Blood Flow and Metabolism 1, 736.CrossRefGoogle ScholarPubMed
Wyper, D. J., Patterson, J., Ferguson, S., Condon, B. R. (1988). Performance evaluation of neuro single photon emission computed tomography imagers. British Journal of Radiology 61, 788792.Google Scholar
Yonekura, Y., Nishizawa, S., Mukai, T., Fujita, T., Fukuyama, H., Ishikawa, M., Kikuchi, H., Konishi, J., Andersen, A. R. & Lassen, N. A. (1988). SPECT with Tc-HMPAO compared with regional cerebral blood flow measured by PET: effects of linearisation. Journal of Cerebral Blood Flow Metabolism 8, S8289.CrossRefGoogle Scholar