Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-27T04:48:51.991Z Has data issue: false hasContentIssue false

Reduced neural response to reward and pleasant pictures independently relate to depression

Published online by Cambridge University Press:  07 January 2020

Julia Klawohn*
Affiliation:
Department of Biomedical Sciences, Florida State University, Tallahassee, USA Department of Psychology, Florida State University, Tallahassee, USA
Kreshnik Burani
Affiliation:
Department of Psychology, Florida State University, Tallahassee, USA
Alec Bruchnak
Affiliation:
Department of Psychology, Florida State University, Tallahassee, USA
Nicholas Santopetro
Affiliation:
Department of Psychology, Florida State University, Tallahassee, USA
Greg Hajcak
Affiliation:
Department of Biomedical Sciences, Florida State University, Tallahassee, USA Department of Psychology, Florida State University, Tallahassee, USA
*
Author for correspondence: Julia Klawohn, E-mail: julia.klawohn@gmail.com

Abstract

Background

Multiple studies have found a reduced reward positivity (RewP) among individuals with major depressive disorder (MDD). Event-related potential studies have also reported blunted neural responses to pleasant pictures in MDD as reflected by the late positive potential (LPP). These deficits have been interpreted broadly in terms of anhedonia and decreased emotional engagement characteristic of depression.

Methods

In the current study, a community-based sample of 83 participants with current MDD and 45 healthy individuals performed both a guessing task and a picture viewing paradigm with neutral and pleasant pictures to assess the RewP and the LPP, respectively.

Results

We found that both RewP and LPP to pleasant pictures were reduced in the MDD group; moreover, RewP and LPP were both independent predictors of MDD status. Within the MDD group, a smaller RewP predicted impaired mood reactivity in younger but not older participants. Smaller LPP amplitudes were associated with increased anhedonia severity in the MDD group.

Conclusions

These data replicate and merge separate previous lines of research, and suggest that a blunted RewP and LPP reflect independent neural deficits in MDD – which could be used in conjunction to improve the classification of depression.

Type
Original Article
Copyright
Copyright © Cambridge University Press 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beck, A. T., Steer, R. A., & Brown, G. K. (1996). Manual for the beck depression inventory-II. San Antonio, TX: Psychological Corporation.Google Scholar
Becker, M. P. I., Nitsch, A. M., Miltner, W. H. R., & Straube, T. (2014). A single-trial estimation of the feedback-related negativity and its relation to BOLD responses in a time-estimation task. The Journal of Neuroscience, 34, 30053012.CrossRefGoogle Scholar
Bress, J. N., & Hajcak, G. (2013). Self-report and behavioral measures of reward sensitivity predict the feedback negativity. Psychophysiology, 50, 610616.CrossRefGoogle ScholarPubMed
Brush, C. J., Ehmann, P. J., Hajcak, G., Selby, E. A., & Alderman, B. L. (2018). Using multilevel modeling to examine blunted neural responses to reward in major depression. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 3, 10321039.Google ScholarPubMed
Burani, K., Klawohn, J., Levinson, A. R., Klein, D. N., Nelson, B. D., & Hajcak, G. (2019). Neural response to rewards, stress and sleep interact to prospectively predict depressive symptoms in adolescent girls. Journal of Clinical Child and Adolescent Psychology, 110.Google ScholarPubMed
Carlson, J. M., Foti, D., Mujica-Parodi, L. R., Harmon-Jones, E., & Hajcak, G. (2011). Ventral striatal and medial prefrontal BOLD activation is correlated with reward-related electrocortical activity: A combined ERP and fMRI study. NeuroImage, 57, 16081616.CrossRefGoogle ScholarPubMed
Cuthbert, B. N., Schupp, H. T., Bradley, M. M., Birbaumer, N., & Lang, P. J. (2000). Brain potentials in affective picture processing: Covariation with autonomic arousal and affective report. Biological Psychology, 52, 95111.CrossRefGoogle ScholarPubMed
Davidson, R. J. (1998). Affective style and affective disorders: Perspectives from affective neuroscience. Cognition & Emotion, 12, 307330.CrossRefGoogle Scholar
First, M. B., Williams, J. B. W., Karg, R. S., & Spitzer, R. L. (2015). Structured Clinical Interview for DSM-5, RV. Arlington, VA: American Psychiatric Association.Google Scholar
Foti, D., Carlson, J. M., Sauder, C. L., & Proudfit, G. H. (2014). Reward dysfunction in major depression: Multimodal neuroimaging evidence for refining the melancholic phenotype. NeuroImage, 101, 5058.CrossRefGoogle ScholarPubMed
Foti, D., Novak, K. D., Hill, K. E., & Oumeziane, B. A. (2018). Neurophysiological assessment of anhedonia in depression and schizophrenia. In Sangha, S. & Foti, D. (Eds.), Neurobiology of abnormal emotion and motivated behaviors (pp. 242256). London: Academic Press.CrossRefGoogle Scholar
Foti, D., Olvet, D. M., Klein, D. N., & Hajcak, G. (2010). Reduced electrocortical response to threatening faces in major depressive disorder. Depression and Anxiety, 27, 813820.CrossRefGoogle ScholarPubMed
Grasso, D. J., & Simons, R. F. (2011). Perceived parental support predicts enhanced late positive event-related brain potentials to parent faces. Biological Psychology, 86, 2630.CrossRefGoogle ScholarPubMed
Gratton, G., Coles, M. G., & Donchin, E. (1983). A new method for off-line removal of ocular artifact. Electroencephalography and Clinical Neurophysiology, 55, 468484.CrossRefGoogle ScholarPubMed
Greenberg, P. E., Fournier, A. A., Sisitsky, T., Pike, C. T., & Kessler, R. C. (2015). The economic burden of adults with major depressive disorder in the United States (2005 and 2010). Journal of Clinical Psychiatry, 76, 155162.CrossRefGoogle Scholar
Hajcak, G., Klawohn, J., & Meyer, A. (2019). The utility of event-related potentials in clinical psychology. Annual Review Clinical Psychology, 15, 7195.CrossRefGoogle ScholarPubMed
Hayes, A. F. (2017). Introduction to mediation, moderation, and conditional process analysis: A regression-based approach. In Little, T. D. (Ed.), Methodology in the Social Sciences. New York: The Guilford Press.Google Scholar
Keren, H., O'Callaghan, G., Vidal-Ribas, P., Buzzell, G. A., Brotman, M. A., Leibenluft, E., & Stringaris, A. (2018). Reward processing in depression: A conceptual and meta-analytic review across fMRI and EEG studies. American Journal of Psychiatry, 175, 11111120.CrossRefGoogle ScholarPubMed
Kessler, R. C., Berglund, P., Demler, O., Jin, R., Koretz, D., Merikangas, K. R., … National Comorbidity Survey, R. (2003). The epidemiology of major depressive disorder: Results from the National Comorbidity Survey Replication (NCS-R). JAMA: The Journal of the American Medical Association 289, 30953105.CrossRefGoogle Scholar
Kessler, R. C., & Bromet, E. J. (2013). The epidemiology of depression across cultures. Annual Review Public Health, 34, 119138.CrossRefGoogle ScholarPubMed
Krueger, R. F., Derringer, J., Markon, K. E., Watson, D., & Skodol, A. E. (2012). Initial construction of a maladaptive personality trait model and inventory for DSM-5. Psychological Medicine, 42, 18791890.CrossRefGoogle ScholarPubMed
Kujawa, A., Hajcak, G., Torpey, D., Kim, J., & Klein, D. N. (2012). Electrocortical reactivity to emotional faces in young children and associations with maternal and paternal depression. Journal of Child Psychology and Psychiatry, 53, 207215.CrossRefGoogle ScholarPubMed
Kujawa, A., Proudfit, G. H., & Klein, D. N. (2014). Neural reactivity to rewards and losses in offspring of mothers and fathers with histories of depressive and anxiety disorders. Journal of Abnormal Psychology, 123, 287297.CrossRefGoogle ScholarPubMed
Lang, P. J., Bradley, M. M., & Cuthbert, B. N. (2008). International affective picture system (IAPS): Affective ratings of pictures and instruction manual. Technical Report A-8. University of Florida, Gainesville, FL.Google Scholar
Levinson, A. R., Speed, B. C., & Hajcak, G. (2019). Neural response to pleasant pictures moderates prospective relationship between stress and depressive symptoms in adolescent girls. Journal of Clinical Child & Adolescent Psychology, 48, 643655.CrossRefGoogle ScholarPubMed
Liu, W.-H., Wang, L.-Z., Shang, H.-R., Shen, Y., Li, Z., Cheung, E. F., & Chan, R. C. (2014). The influence of anhedonia on feedback negativity in major depressive disorder. Neuropsychologia, 53, 213220.CrossRefGoogle ScholarPubMed
Lobbestael, J., Leurgans, M., & Arntz, A. (2011). Inter-rater reliability of the Structured Clinical Interview for DSM-IV Axis I disorders (SCID I) and Axis II disorders (SCID II). Clinical Psychology & Psychotherapy, 18, 7579.CrossRefGoogle Scholar
MacNamara, A., Kotov, R., & Hajcak, G. (2016). Diagnostic and symptom-based predictors of emotional processing in generalized anxiety disorder and major depressive disorder: An event-related potential study. Cognitive Therapy and Research, 40, 275289.CrossRefGoogle Scholar
McMakin, D. L., Olino, T. M., Porta, G., Dietz, L. J., Emslie, G., Clarke, G., & Birmaher, B. (2012). Anhedonia predicts poorer recovery among youth with selective serotonin reuptake inhibitor treatment–resistant depression. Journal of the American Academy of Child & Adolescent Psychiatry, 51, 404411.CrossRefGoogle ScholarPubMed
Meyer, A., Nelson, B., Perlman, G., Klein, D. N., & Kotov, R. (2018). A neural biomarker, the error-related negativity, predicts the first onset of generalized anxiety disorder in a large sample of adolescent females. Journal of Child Psychology and Psychiatry, 59, 11621170.CrossRefGoogle Scholar
Nelson, B. D., Perlman, G., Klein, D. N., Kotov, R., & Hajcak, G. (2016). Blunted neural response to rewards as a prospective predictor of the development of depression in adolescent girls. American Journal of Psychiatry, 173, 12231230.CrossRefGoogle ScholarPubMed
Nelson, B. D., Perlman, G., Proudfit, G. H., Klein, D. N., & Kotov, R. (2014). The late positive potential and risk for distress and fear disorders in adolescence. Psychophysiology, 51, S7S7.Google Scholar
Pizzagalli, D. A., Iosifescu, D., Hallett, L. A., Ratner, K. G., & Fava, M. (2008). Reduced hedonic capacity in major depressive disorder: evidence from a probabilistic reward task. Journal of psychiatric research, 43, 7687.CrossRefGoogle ScholarPubMed
Proudfit, G. H. (2015). The reward positivity: From basic research on reward to a biomarker for depression. Psychophysiology, 52, 449459.CrossRefGoogle ScholarPubMed
Proudfit, G. H., Bress, J. N., Foti, D., Kujawa, A., & Klein, D. N. (2015). Depression and Event-related Potentials: Emotional disengagement and reward insensitivity. Current Opinion in Psychology, 4, 110113.CrossRefGoogle ScholarPubMed
Sandre, A., Bagot, R. C., & Weinberg, A. (2019). Blunted neural response to appetitive images prospectively predicts symptoms of depression, and not anxiety, during the transition to university. Biological Psychology, 145, 3141.CrossRefGoogle Scholar
Sheehan, D., Lecrubier, Y., Sheehan, K. H., Janavs, J., Weiller, E., Keskiner, A., & Dunbar, G. (1997). The validity of the Mini International Neuropsychiatric Interview (MINI) according to the SCID-P and its reliability. European Psychiatry, 12, 232241.CrossRefGoogle Scholar
Sheehan, D. V., Lecrubier, Y., Sheehan, K. H., Amorim, P., Janavs, J., Weiller, E., & Dunbar, G. C. (1998). The Mini-International Neuropsychiatric Interview (M.I.N.I.): The development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. Journal of Clinical Psychiatry, 59(Suppl 20), 2233; quiz 34–57.Google ScholarPubMed
Stockburger, J., Schmälzle, R., Flaisch, T., Bublatzky, F., & Schupp, H. T. (2009). The impact of hunger on food cue processing: an event-related brain potential study. Neuroimage, 47, 18191829.CrossRefGoogle Scholar
Uher, R., Perlis, R., Henigsberg, N., Zobel, A., Rietschel, M., Mors, O., & Bajs, M. (2012). Depression symptom dimensions as predictors of antidepressant treatment outcome: Replicable evidence for interest-activity symptoms. Psychological Medicine, 42, 967980.CrossRefGoogle ScholarPubMed
Weinberg, A., & Hajcak, G. (2010). Beyond good and evil: The time-course of neural activity elicited by specific picture content. Emotion, 10, 767782.CrossRefGoogle ScholarPubMed
Weinberg, A., & Hajcak, G. (2011). The late positive potential predicts subsequent interference with target processing. Journal of Cognitive Neuroscience, 23, 29943007.CrossRefGoogle ScholarPubMed
Weinberg, A., May, A. M., Klonsky, E. D., Kotov, R., & Hajcak, G. (2017). Decreased neural response to threat differentiates patients who have attempted suicide from nonattempters with current ideation. Clinical Psychological Science, 5, 952963.CrossRefGoogle Scholar
Weinberg, A., Perlman, G., Kotov, R., & Hajcak, G. (2016). Depression and reduced neural response to emotional images: Distinction from anxiety, and importance of symptom dimensions and age of onset. Journal of Abnormal Psychology, 125, 2639.CrossRefGoogle ScholarPubMed
Whiteford, H. A., Degenhardt, L., Rehm, J., Baxter, A. J., Ferrari, A. J., Erskine, H. E., & Vos, T. (2013). Global burden of disease attributable to mental and substance use disorders: Findings from the Global Burden of Disease Study 2010. Lancet, 382, 15751586.CrossRefGoogle ScholarPubMed
Supplementary material: File

Klawohn et al. supplementary material

Table S1 and Figure S1

Download Klawohn et al. supplementary material(File)
File 201.7 KB