Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-28T02:11:38.177Z Has data issue: false hasContentIssue false

The sporadic v. familial classification given aetiological heterogeneity: II. Power analyses

Published online by Cambridge University Press:  09 July 2009

Kenneth S. Kendler*
Affiliation:
Departments of Psychiatry and Human Genetics, Medical College of Virginia/ Virginia Commonwealth University, Richmond, VA. USA
*
1 Address correspondence: Dr K. Kendler, Department of Psychiatry, Box 710 MCV Station, Richmond, VA 23298, USA.

Synopsis

This paper examines the power of the sporadic v. familial method as applied to schizophrenia and major depression. The model used assumes aetiological heterogeneity with a subpopulation of cases due to a ‘major’ environmental event and the remainder resulting from a generalized single major locus. The findings suggest that, for sample sizes to which it is commonly applied, the sporadic v. familial classification has low power to detect aetiological heterogeneity. When applied to nuclear families, substantial power requires at a minimum 100–150 proband families. If the proportion of environmental cases in the population is low, or the ‘test’ for environmental aetiology in probands does not have high sensitivity and specificity, the required sample sizes are considerably larger. Adding monozygotic twins increases the power of the method, but including second-degree relatives does not. The optimal approach to the sporadic v. familial method will differ as a function of the frequency of the disorder and the relative effort and expense of examining probands versus family members. Other methods should be considered for discriminating genetic and environmental forms of illness.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, D. E. (1971). Some characteristics of familial breast cancer. Cancer 28, 15001504.3.0.CO;2-D>CrossRefGoogle ScholarPubMed
Andreasen, N. C, Endicott, J., Spitzer, R. L. & Winokur, G. (1977). The family history method using diagnostic criteria: reliability and validity. Archives of General Psychiatry 34, 12291235.CrossRefGoogle ScholarPubMed
Beaty, T. H. & Boughman, J. A. (1986). Problems in detecting etiological heterogeneity in genetic disease illustrated with retinitis pigmentosa. American Journal of Medical Genetics 24, 493504.CrossRefGoogle ScholarPubMed
Bertelsen, A., Harvald, B. & Hauge, M. (1977). A Danish twin study of manic-depressive disorders. British Journal of Psychiatry 130, 330351.CrossRefGoogle ScholarPubMed
Brass, W. (1958). The distibution of births in human populations. Population Studies 12, 5172.Google Scholar
Chakraborty, R., Weiss, K. M., Majumder, P. P., Strong, L. C. & Herson, J. (1984). A method to detect excess risk of disease in structured data: cancer in relatives of retinoblastoma patients. Genetic Epidemiology 1, 229244.CrossRefGoogle ScholarPubMed
Eaves, L. J. (1984). The resolution of genotype × environment interaction in segregation analysis of nuclear families. Genetic Epidemiology 1, 215228.CrossRefGoogle ScholarPubMed
Eaves, L. J., Kendler, K. S. & Schulz, S. C. (1986). The familial sporadic classification: its power for the resolution of genetic and environmental etiologic factors Journal of Psychiatric Research 20, 115130.CrossRefGoogle ScholarPubMed
Gershon, E. S. & Guroff, J. J. (1984). Information from relatives: diagnosis of affective disorders. Archives of General Psychiatry 41, 173180.CrossRefGoogle ScholarPubMed
Goldin, L. R., DeLisi, L. E. & Gershon, E. S. (1987). Unravelling the relationship between genetic and environmental risk factors in psychiatric disorder. British Journal of Psychiatry 151, 302305.CrossRefGoogle Scholar
Goldberg, E. L. & Comstock, G. W. (1980). Epidemiology of life events: frequency in general populations. American Journal of Epidemiology 111, 736752.CrossRefGoogle ScholarPubMed
Greenberg, D. A. & Hodge, S. E. (1985). The heterogeneity problem: I. Separating genetic from environmental forms of the same disease. American Journal of Human Genetics 21, 357371.Google ScholarPubMed
Goodwin, D. W. (1984). Studies of familial alcoholism: a review. Journal of Clinical Psychiatry 45, 1417.Google ScholarPubMed
James, J. W. (1971). Frequency in relatives for an all-or-none trait. Annals of Human Genetics 35, 4749.CrossRefGoogle ScholarPubMed
Kendler, K. S. (1983). Overview: a current perspective on twin studies of schizophrenia. American Journal of Psychiatry 140, 14131425.Google ScholarPubMed
Kendler, K. S. (1987). The sporadic vs. familial classification given etiologic heterogeneity: I. Sensitivity, specificity and positive and negative predictive value. Genetic Epidemiology 4, 313330.CrossRefGoogle ScholarPubMed
Kendler, K. S. & Eaves, L. J. (1986). Models for the joint effect of genotype and environment on liability to psychiatric illness. American Journal of Psychiatry 143, 279289.Google ScholarPubMed
Kendler, K. S. & Hays, P. (1982). Familial and sporadic schizophrenia: a symptomatic, prognostic, and EEG comparison. American Journal of Psychiatry 139, 15571562.Google ScholarPubMed
Kendler, K. S., Tsuang, M. T. & Hays, P. (1987). Age at onset in schizophrenia: A familial perspective. Archives of General Psychiatry 44, 881890.CrossRefGoogle ScholarPubMed
Lewis, S. W., Reveley, A. M., Reveley, M. A., Chitkara, B. & Murray, R. M. (1987). The familial/sporadic distinction as a strategy in schizophrenia research. British Journal of Psychiatry 151, 306313.CrossRefGoogle ScholarPubMed
McGuffin, P., Farmer, A. & Gottesman, I. I. (1987). Is there really a split in schizophrenia? The genetic evidence. British Journal of Psychiatry 150, 581592.CrossRefGoogle ScholarPubMed
Moll, P. P., Berry, T. D., Weidman, W. H., Ellefson, R., Gordon, H. & Kottke, B. A. (1984). Detection of genetic heterogeneity among pedigrees through complex segregation analysis: an application to hypercholestremia. American Journal of Human Genetics 36, 197211.Google Scholar
Myers, J. K., Lindenthal, J. J. & Pepper, M P. (1971). Life events and psychiatric impairment. Journal of Nervous and Mental Diseases 152, 149157.CrossRefGoogle ScholarPubMed
Pearson, E. S. & Hartley, H. O. (eds) (1972). Biometrika Tables for Statisticians, Vol 2,. Cambridge University Press: Cambridge.Google Scholar
Perris, H., von Knorring, L. & Perris, C. (1982). Genetic vulnerability for depression and life events. Neuropsychobiology 8, 241247.Google ScholarPubMed
Pollitt, J. (1972). The relationship between genetic and precipitating factors in depressive illness. British Journal of Psychiatry 121, 6770.CrossRefGoogle ScholarPubMed
Reveley, A. M., Reveley, M. A & Murray, R. M. (1984). Cerebral ventricular enlargement in ‘non-genetic’ schizophrenia: a controlled twin study. British Journal of Psychiatry 144, 8993.CrossRefGoogle ScholarPubMed
Smith, C. (1971). Discriminating between different modes of inheritance in genetic disease. Clinical Genetics 2, 303314.CrossRefGoogle ScholarPubMed
Torgerson, S. (1986). Genetic factors in moderately severe and mild affective disorders. Archives of General Psychiatry 43, 222226.CrossRefGoogle Scholar
Winokur, G., Behar, D., Vanvalkenburg, D. & Lowry, M. (1978). Is a familial definition of depression both feasible and valid? Journal of Nervous and Mental Diseases 166, 764768.CrossRefGoogle ScholarPubMed