Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-26T03:42:40.943Z Has data issue: false hasContentIssue false

Association between the glyco-metabolic adverse effects of antipsychotic drugs and their chemical and pharmacological profile: a network meta-analysis and regression

Published online by Cambridge University Press:  24 February 2021

Carla Carnovale
Affiliation:
Unit of Clinical Pharmacology, Department of Biomedical and Clinical Sciences L. Sacco, “Luigi Sacco” University Hospital, Università di Milano, Milan, Italy
Ersilia Lucenteforte
Affiliation:
Unit of Medical Statistics, Department of Clinical and Experimental Medicine, University of Pisa, Via Savi 10, 56126 Pisa, Italy
Vera Battini
Affiliation:
Unit of Clinical Pharmacology, Department of Biomedical and Clinical Sciences L. Sacco, “Luigi Sacco” University Hospital, Università di Milano, Milan, Italy
Faizan Mazhar
Affiliation:
Unit of Clinical Pharmacology, Department of Biomedical and Clinical Sciences L. Sacco, “Luigi Sacco” University Hospital, Università di Milano, Milan, Italy
Marco Fornili
Affiliation:
Unit of Medical Statistics, Department of Clinical and Experimental Medicine, University of Pisa, Via Savi 10, 56126 Pisa, Italy
Elena Invernizzi
Affiliation:
Unit of Clinical Pharmacology, Department of Biomedical and Clinical Sciences L. Sacco, “Luigi Sacco” University Hospital, Università di Milano, Milan, Italy
Giulia Mosini
Affiliation:
Unit of Clinical Pharmacology, Department of Biomedical and Clinical Sciences L. Sacco, “Luigi Sacco” University Hospital, Università di Milano, Milan, Italy
Michele Gringeri
Affiliation:
Unit of Clinical Pharmacology, Department of Biomedical and Clinical Sciences L. Sacco, “Luigi Sacco” University Hospital, Università di Milano, Milan, Italy
Annalisa Capuano
Affiliation:
Department of Experimental Medicine, Campania Regional Centre for Pharmacovigilance and Pharmacoepidemiology, Section of Pharmacology “L. Donatelli”, University of Campania “Luigi Vanvitelli”, Naples, Italy
Cristina Scavone
Affiliation:
Department of Experimental Medicine, Campania Regional Centre for Pharmacovigilance and Pharmacoepidemiology, Section of Pharmacology “L. Donatelli”, University of Campania “Luigi Vanvitelli”, Naples, Italy
Maria Nobile
Affiliation:
Scientific institute IRCCS E. Medea, Bosisio Parini, LC, 23892, Italy
Chiara Vantaggiato
Affiliation:
Scientific institute IRCCS E. Medea, Bosisio Parini, LC, 23892, Italy
Simone Pisano
Affiliation:
Department of Translational Medical Sciences, Federico II University, Naples, Italy Department of Neuroscience, AORN Santobono-Pausilipon, Naples, Italy
Carmela Bravaccio
Affiliation:
Department of Translational Medical Sciences, Federico II University, Naples, Italy
Sonia Radice
Affiliation:
Unit of Clinical Pharmacology, Department of Biomedical and Clinical Sciences L. Sacco, “Luigi Sacco” University Hospital, Università di Milano, Milan, Italy
Emilio Clementi*
Affiliation:
Unit of Clinical Pharmacology, Department of Biomedical and Clinical Sciences L. Sacco, “Luigi Sacco” University Hospital, Università di Milano, Milan, Italy Scientific institute IRCCS E. Medea, Bosisio Parini, LC, 23892, Italy
Marco Pozzi
Affiliation:
Scientific institute IRCCS E. Medea, Bosisio Parini, LC, 23892, Italy
*
Author for correspondence: Emilio Clementi, E-mail: emilio.clementi@unimi.it

Abstract

Background

Glyco-metabolic deteriorations are the most limiting adverse reactions to antipsychotics in the long term. They have been incompletely investigated and the properties of antipsychotics that determine their magnitude are not clarified.

To rank antipsychotics by the magnitude of glyco-metabolic alterations and to associate it to their pharmacological and chemical properties, we conducted a network meta-analysis.

Methods

We searched PubMed, Embase, and Psycinfo on 10 September 2020. We selected studies containing the endpoint-baseline difference or the distinct values of at least one outcome among glucose, HbA1c, insulin, HOMA-IR, triglycerides, total/HDL/LDL cholesterols. Of 2094 articles, 46 were included in network meta-analysis. Study quality was assessed by the RoB 2 and ROBINS-I tools. Mean differences (MD) were obtained by random-effects network meta-analysis; relations between MD and antipsychotic properties were analyzed by linear regressions. Antipsychotic properties investigated were acidic and basic pKa, polar surface area, polarizability, and occupancies of D2, H1, M1, M3, α1A, α2A, 5-HT1A, 5-HT2A, 5-HT2C receptors.

Results

We meta-analyzed 46 studies (11 464 patients); on average, studies lasted 15.47 weeks, patients had between 17.68 and 61.06 years of mean age and 61.64% were males. Olanzapine and clozapine associated with greater deteriorations, aripiprazole and ziprasidone with smaller deteriorations. Higher polarizability and 5-HT1A receptor occupancy were associated with smaller deteriorations, H1, M1, and M3 receptor occupancies with larger deteriorations.

Conclusions

Drug rankings may guide antipsychotic switching toward metabolically safer drugs. Mechanistic insights may suggest improvements for combination therapies and drug development. More data are required regarding newer antipsychotics.

Type
Original Article
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

These authors contributed equally to this work.

Co-Last Authors.

References

Almaça, J., Molina, J., Menegaz, D., Pronin, A. N., Tamayo, A., Slepak, V., … Caicedo, A. (2016). Human Beta cells produce and release serotonin to inhibit glucagon secretion from alpha cells. Cell Reports, 17(12), 32813291. doi:10.1016/j.celrep.2016.11.072.CrossRefGoogle ScholarPubMed
Bak, M., Fransen, A., Janssen, J., van Os, J., & Drukker, M. (2014). Almost all antipsychotics result in weight gain: A meta-analysis. PloS one, 9(4), e94112. doi:10.1371/journal.pone.0094112.CrossRefGoogle ScholarPubMed
Ballon, J. S., Pajvani, U., Freyberg, Z., Leibel, R. L., & Lieberman, J. A. (2014). Molecular pathophysiology of metabolic effects of antipsychotic medications. Trends in Endocrinology and Metabolism, 25(11), 593600. doi:10.1016/j.tem.2014.07.004CrossRefGoogle ScholarPubMed
Barton, B. B., Segger, F., Fischer, K., Obermeier, M., & Musil, R. (2020). Update on weight-gain caused by antipsychotics: A systematic review and meta-analysis. Expert Opinion on Drug Safety, 19(3), 295314. doi:10.1080/14740338.2020.1713091.CrossRefGoogle ScholarPubMed
Buhagiar, K., & Jabbar, F. (2019). Association of first- vs. second-generation antipsychotics with lipid abnormalities in individuals with severe mental illness: A systematic review and meta-analysis. Clinical Drug Investigation, 39(3), 253273. doi:10.1007/s40261-019-00751-2.CrossRefGoogle ScholarPubMed
Canfrán-Duque, A., Barrio, L. C., Lerma, M., de la Peña, G., Serna, J., Pastor, O., … Busto, R. (2016). First-Generation antipsychotic haloperidol alters the functionality of the late endosomal/lysosomal compartment in vitro. International Journal of Molecular Sciences, 17(3), 404. doi:10.3390/ijms17030404.CrossRefGoogle ScholarPubMed
Canfrán-Duque, A., Casado, M. E., Pastor, O., Sánchez-Wandelmer, J., de la Peña, G., Lerma, M., … Busto, R. (2013). Atypical antipsychotics alter cholesterol and fatty acid metabolism in vitro. Journal of Lipid Research, 54(2), 310324. doi:10.1194/jlr.M026948.CrossRefGoogle ScholarPubMed
Casey, D. E., & Zorn, S. H. (2001). The pharmacology of weight gain with antipsychotics. The Journal of Clinical Psychiatry, 62(Suppl 7), 410.Google ScholarPubMed
Del Campo, A., Bustos, C., Mascayano, C., Acuña-Castillo, C., Troncoso, R., & Rojo, L. E. (2018). Metabolic syndrome and antipsychotics: The role of mitochondrial fission/fusion imbalance. Frontiers in Endocrinology, 9, 144. doi:10.3389/fendo.2018.00144.CrossRefGoogle ScholarPubMed
Dickens, A. M., Sen, P., Kempton, M. J., Barrantes-Vidal, N., Iyegbe, C., Nordentoft, M., … McGuire, P. (2020). Dysregulated lipid metabolism precedes onset of psychosis. Biological Psychiatry, S0006–3223(20), 31774–1, Advance online publication. doi:10.1016/j.biopsych.2020.07.012.Google Scholar
Gershon, M. D. (2013). 5-Hydroxytryptamine (serotonin) in the gastrointestinal tract. Current Opinion in Endocrinology, Diabetes, and Obesity, 20(1), 1421. doi:10.1097/MED.0b013e32835bc703.CrossRefGoogle ScholarPubMed
Hajduch, E., Rencurel, F., Balendran, A., Batty, I. H., Downes, C. P., & Hundal, H. S. (1999). Serotonin (5-hydroxytryptamine), a novel regulator of glucose transport in rat skeletal muscle. The Journal of Biological Chemistry, 274(19), 1356313568. doi:10.1074/jbc.274.19.13563.CrossRefGoogle ScholarPubMed
Hellewell, S. B., Bruce, A., Feinstein, G., Orringer, J., Williams, W., & Bowen, W. D. (1994). Rat liver and kidney contain high densities of Sigma 1 and Sigma 2 receptors: Characterization by ligand binding and photoaffinity labeling. European Journal of Pharmacology, 268(1), 918. doi:10.1016/0922-4106(94)90115-5.CrossRefGoogle ScholarPubMed
Hiemke, C., Bergemann, N., Clement, H. W., Conca, A., Deckert, J., Domschke, K., … Baumann, P. (2018). Consensus guidelines for therapeutic drug monitoring in neuropsychopharmacology: Update 2017. Pharmacopsychiatry, 51(1–02), 962. doi:10.1055/s-0043-116492.Google ScholarPubMed
Higgins, J. P. T., Thomas, J., Chandler, J., Cumpston, M., Li, T., Page, M. J., & Welch, V. A. (Eds) (2020). Cochrane handbook for systematic reviews of interventions version 6.1. Cochrane. Available from www.training.cochrane.org/handbook.Google Scholar
Huhn, M., Nikolakopoulou, A., Schneider-Thoma, J., Krause, M., Samara, M., Peter, N., … Leucht, S. (2019). Comparative efficacy and tolerability of 32 oral antipsychotics for the acute treatment of adults with multi-episode schizophrenia: A systematic review and network meta-analysis. Lancet (London, England), 394(10202), 939951. doi:10.1016/S0140-6736(19)31135-3CrossRefGoogle ScholarPubMed
Hutton, B., Salanti, G., Caldwell, D. M., Chaimani, A., Schmid, C. H., Cameron, C., … Moher, D. (2015). The PRISMA extension statement for reporting of systematic reviews incorporating network meta-analyses of health care interventions: Checklist and explanations. Annals of Internal Medicine, 162(11), 777784. doi:10.7326/M14-2385.CrossRefGoogle ScholarPubMed
IUPHAR - International Union of Basic & Clinical Pharmacology (2020). Retrieved from https://iuphar.org/.Google Scholar
Kenakin, T. (2004). Principles: Receptor theory in pharmacology. Trends in Pharmacological Sciences, 25(4), 186192. doi:10.1016/j.tips.2004.02.012.CrossRefGoogle ScholarPubMed
Krause, M., Zhu, Y., Huhn, M., Schneider-Thoma, J., Bighelli, I., Chaimani, A., & Leucht, S. (2018). Efficacy, acceptability, and tolerability of antipsychotics in children and adolescents with schizophrenia: A network meta-analysis. European Neuropsychopharmacology, 28(6), 659674. doi:10.1016/j.euroneuro.2018.03.008.CrossRefGoogle ScholarPubMed
Kristiana, I., Sharpe, L. J., Catts, V. S., Lutze-Mann, L. H., & Brown, A. J. (2010). Antipsychotic drugs upregulate lipogenic gene expression by disrupting intracellular trafficking of lipoprotein-derived cholesterol. The Pharmacogenomics Journal, 10(5), 396407. doi:10.1038/tpj.2009.62.CrossRefGoogle ScholarPubMed
Kumar, P., Efstathopoulos, P., Millischer, V., Olsson, E., Wei, Y. B., Brüstle, O., … Lavebratt, C. (2018). Mitochondrial DNA copy number is associated with psychosis severity and anti-psychotic treatment. Scientific Reports, 8(1), 12743. doi:10.1038/s41598-018-31122-0.CrossRefGoogle ScholarPubMed
Lauressergues, E., Staels, B., Valeille, K., Majd, Z., Hum, D. W., Duriez, P., & Cussac, D. (2010). Antipsychotic drug action on SREBPs-related lipogenesis and cholesterogenesis in primary rat hepatocytes. Naunyn-Schmiedeberg's Archives of Pharmacology, 381(5), 427439. doi:10.1007/s00210-010-0499-4.CrossRefGoogle ScholarPubMed
Leucht, S., Cipriani, A., Spineli, L., Mavridis, D., Orey, D., Richter, F., … Davis, J. M. (2013). Comparative efficacy and tolerability of 15 antipsychotic drugs in schizophrenia: A multiple-treatments meta-analysis. Lancet (London, England), 382(9896), 951962. doi:10.1016/S0140-6736(13)60733-3.CrossRefGoogle ScholarPubMed
Lindström, L., Lindström, E., Nilsson, M., & Höistad, M. (2017). Maintenance therapy with second generation antipsychotics for bipolar disorder - A systematic review and meta-analysis. Journal of Affective Disorders, 213, 138150. doi:10.1016/j.jad.2017.02.012.CrossRefGoogle ScholarPubMed
Maher, A. R., Maglione, M., Bagley, S., Suttorp, M., Hu, J. H., Ewing, B., … Shekelle, P. G. (2011). Efficacy and comparative effectiveness of atypical antipsychotic medications for off-label uses in adults: A systematic review and meta-analysis. Journal of American Medical Association, 306(12), 13591369. doi:10.1001/jama.2011.1360.CrossRefGoogle ScholarPubMed
Misiak, B., Stańczykiewicz, B., Łaczmański, Ł, & Frydecka, D. (2017). Lipid profile disturbances in antipsychotic-naive patients with first-episode non-affective psychosis: A systematic review and meta-analysis. Schizophrenia Research, 190, 1827. doi:10.1016/j.schres.2017.03.031.CrossRefGoogle ScholarPubMed
Musil, R., Obermeier, M., Russ, P., & Hamerle, M. (2015). Weight gain and antipsychotics: A drug safety review. Expert Opinion on Drug Safety, 14(1), 7396. doi:10.1517/14740338.2015.974549CrossRefGoogle ScholarPubMed
Olten, B., & Bloch, M. H. (2018). Meta regression: Relationship between antipsychotic receptor binding profiles and side-effects. Progress in Neuro-psychopharmacology & Biological Psychiatry, 84(Pt A), 272281. doi:10.1016/j.pnpbp.2018.01.023.CrossRefGoogle ScholarPubMed
PDSP - NIMH Psychoactive Drug Screening Program (2020). Retrieved from https://pdsp.unc.edu/pdspweb/.Google Scholar
Pillinger, T., Beck, K., Stubbs, B., & Howes, O. D. (2017). Cholesterol and triglyceride levels in first-episode psychosis: Systematic review and meta-analysis. The British Journal of Psychiatry, 211(6), 339349. doi:10.1192/bjp.bp.117.200907.CrossRefGoogle ScholarPubMed
Pillinger, T., McCutcheon, R. A., Vano, L., Mizuno, Y., Arumuham, A., Hindley, G., … Howes, O. D. (2020). Comparative effects of 18 antipsychotics on metabolic function in patients with schizophrenia, predictors of metabolic dysregulation, and association with psychopathology: A systematic review and network meta-analysis. The Lancet Psychiatry, 7(1), 6477. doi:10.1016/S2215-0366(19)30416-X.CrossRefGoogle ScholarPubMed
Pozzi, M., Pisano, S., Marano, G., Carnovale, C., Bravaccio, C., Rafaniello, C., … Radice, S. (2019). Weight-Change trajectories of pediatric outpatients treated with risperidone or aripiprazole in a naturalistic setting. Journal of Child and Adolescent Psychopharmacology, 29(2), 133140. doi:10.1089/cap.2018.0092.CrossRefGoogle ScholarPubMed
Rafaniello, C., Pozzi, M., Pisano, S., Ferrajolo, C., Bertella, S., Sportiello, L., … Capuano, A. (2016). Second generation antipsychotics in ‘real-life’ paediatric patients. Adverse drug reactions and clinical outcomes of drug switch. Expert Opinion on Drug Safety, 15(sup2), 18. doi:10.1080/14740338.2016.1229301.CrossRefGoogle ScholarPubMed
RoB 2: A revised Cochrane risk-of-bias tool for randomized trials (2020). Retrieved from https://methods.cochrane.org/bias/resources/rob-2-revised-cochrane-risk-bias-tool-randomized-trials.Google Scholar
Roerig, J. L., Steffen, K. J., & Mitchell, J. E. (2011). Atypical antipsychotic-induced weight gain: Insights into mechanisms of action. CNS Drugs, 25(12), 10351059. doi:10.2165/11596300-000000000-00000.CrossRefGoogle ScholarPubMed
Rücker, G. (2012). Network meta-analysis, electrical networks and graph theory. Research Synthesis Methods, 3(4), 312324. doi:10.1002/jrsm.1058.CrossRefGoogle ScholarPubMed
Rücker, G., Krahn, U., König, J., Efthimiou, O., & Schwarzer, G. (2020). netmeta: Network Meta-Analysis using Frequentist Methods. Available from https://cran.r-project.org/package=netmeta.Google Scholar
Rummel-Kluge, C., Komossa, K., Schwarz, S., Hunger, H., Schmid, F., Lobos, C. A., … Leucht, S. (2010). Head-to-head comparisons of metabolic side effects of second generation antipsychotics in the treatment of schizophrenia: A systematic review and meta-analysis. Schizophrenia Research, 123(2–3), 225233. doi:10.1016/j.schres.2010.07.012.CrossRefGoogle ScholarPubMed
Sabbir, M. G., Calcutt, N. A., & Fernyhough, P. (2018). Muscarinic acetylcholine type 1 receptor activity constrains neurite outgrowth by inhibiting microtubule polymerization and mitochondrial trafficking in adult sensory neurons. Frontiers in Neuroscience, 12, 402. doi:10.3389/fnins.2018.00402.CrossRefGoogle ScholarPubMed
Scaini, G., Quevedo, J., Velligan, D., Roberts, D. L., Raventos, H., & Walss-Bass, C. (2018). Second generation antipsychotic-induced mitochondrial alterations: Implications for increased risk of metabolic syndrome in patients with schizophrenia. European Neuropsychopharmacology, 28(3), 369380. doi:10.1016/j.euroneuro.2018.01.004.CrossRefGoogle ScholarPubMed
Skrede, S., Steen, V. M., & Fernø, J. (2013). Antipsychotic-induced increase in lipid biosynthesis: Activation through inhibition? Journal of Lipid Research, 54(2), 307309. doi:10.1194/jlr.E034736.CrossRefGoogle ScholarPubMed
Sterne, J. A., Hernán, M. A., Reeves, B. C., Savović, J., Berkman, N. D., Viswanathan, M., … Higgins, J. P. (2016). ROBINS-I: A tool for assessing risk of bias in non-randomised studies of interventions. British Medical Journal, 355, i4919. doi:10.1136/bmj.i4919.CrossRefGoogle ScholarPubMed
Tek, C., Kucukgoncu, S., Guloksuz, S., Woods, S. W., Srihari, V. H., & Annamalai, A. (2016). Antipsychotic-induced weight gain in first-episode psychosis patients: A meta-analysis of differential effects of antipsychotic medications. Early Intervention in Psychiatry, 10(3), 193202. doi:10.1111/eip.12251CrossRefGoogle ScholarPubMed
Turkheimer, F. E., Selvaggi, P., Mehta, M. A., Veronese, M., Zelaya, F., Dazzan, P., & Vernon, A. C. (2020). Normalizing the abnormal: Do antipsychotic drugs push the Cortex into an unsustainable metabolic envelope? Schizophrenia Bulletin, 46(3), 484495. doi:10.1093/schbul/sbz119.CrossRefGoogle ScholarPubMed
Vantaggiato, C., Castelli, M., Giovarelli, M., Orso, G., Bassi, M. T., Clementi, E., & De Palma, C. (2019). The fine tuning of Drp1-dependent mitochondrial remodeling and autophagy controls neuronal differentiation. Frontiers in Cellular Neuroscience, 13, 120. doi:10.3389/fncel.2019.00120.CrossRefGoogle ScholarPubMed
Vantaggiato, C., Panzeri, E., Citterio, A., Orso, G., & Pozzi, M. (2019). Antipsychotics promote metabolic disorders disrupting cellular lipid metabolism and trafficking. Trends in Endocrinology and Metabolism, 30(3), 189210. doi:10.1016/j.tem.2019.01.003.CrossRefGoogle ScholarPubMed
Wedervang-Resell, K., Friis, S., Lonning, V., Smelror, R. E., Johannessen, C., Agartz, I., … Myhre, A. M. (2020). Lipid alterations in adolescents with early-onset psychosis may be independent of antipsychotic medication. Schizophrenia Research, 216, 295301. doi:10.1016/j.schres.2019.11.039.CrossRefGoogle ScholarPubMed
Wishart, D. S., Feunang, Y. D., Guo, A. C., Lo, E. J., Marcu, A., Grant, J. R., … Wilson, M. (2018). Drugbank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Research, 46(D1), D1074D1082. doi:10.1093/nar/gkx1037.CrossRefGoogle Scholar
Zhang, Y., Liu, Y., Su, Y., You, Y., Ma, Y., Yang, G., … Kou, C. (2017). The metabolic side effects of 12 antipsychotic drugs used for the treatment of schizophrenia on glucose: A network meta-analysis. BMC Psychiatry, 17(1), 373. doi:10.1186/s12888-017-1539-0.CrossRefGoogle ScholarPubMed
Zhou, X., Keitner, G. I., Qin, B., Ravindran, A. V., Bauer, M., Del Giovane, C., … Xie, P. (2015). Atypical antipsychotic augmentation for treatment-resistant depression: A systematic review and network meta-analysis. The International Journal of Neuropsychopharmacology, 18(11), pyv060. doi:10.1093/ijnp/pyv060.CrossRefGoogle ScholarPubMed
Supplementary material: File

Carnovale et al. supplementary material

Carnovale et al. supplementary material

Download Carnovale et al. supplementary material(File)
File 273.3 KB