Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-08T18:22:07.079Z Has data issue: false hasContentIssue false

Association of the plasma complement system with brain volume deficits in bipolar and major depressive disorders

Published online by Cambridge University Press:  26 October 2022

Hua Yu
Affiliation:
Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Hangzhou, Zhejiang, China NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang, China
Peiyan Ni
Affiliation:
The Psychiatric Laboratory and Mental Health Center, West China Hospital, Sichuan University, Chengdu, Sichuan, P R China
Yang Tian
Affiliation:
The Psychiatric Laboratory and Mental Health Center, West China Hospital, Sichuan University, Chengdu, Sichuan, P R China
Liansheng Zhao
Affiliation:
The Psychiatric Laboratory and Mental Health Center, West China Hospital, Sichuan University, Chengdu, Sichuan, P R China
Mingli Li
Affiliation:
The Psychiatric Laboratory and Mental Health Center, West China Hospital, Sichuan University, Chengdu, Sichuan, P R China
Xiaojing Li
Affiliation:
Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Hangzhou, Zhejiang, China NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang, China
Wei Wei
Affiliation:
Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Hangzhou, Zhejiang, China NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang, China
Jinxue Wei
Affiliation:
The Psychiatric Laboratory and Mental Health Center, West China Hospital, Sichuan University, Chengdu, Sichuan, P R China
Xiangdong Du
Affiliation:
Suzhou Psychiatry Hospital, Affiliated Guangji Hospital of Soochow University, Suzhou, 215137, Jiangsu, China
Qiang Wang
Affiliation:
The Psychiatric Laboratory and Mental Health Center, West China Hospital, Sichuan University, Chengdu, Sichuan, P R China
Wanjun Guo
Affiliation:
Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Hangzhou, Zhejiang, China NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang, China
Wei Deng
Affiliation:
Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Hangzhou, Zhejiang, China NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang, China
Xiaohong Ma
Affiliation:
The Psychiatric Laboratory and Mental Health Center, West China Hospital, Sichuan University, Chengdu, Sichuan, P R China
Jeremy Coid
Affiliation:
The Psychiatric Laboratory and Mental Health Center, West China Hospital, Sichuan University, Chengdu, Sichuan, P R China
Tao Li*
Affiliation:
Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Hangzhou, Zhejiang, China NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang, China
*
Author for correspondence: Tao Li, E-mail: litaozjusc@zju.edu.cn

Abstract

Background

Inflammation plays a crucial role in the pathogenesis of major depressive disorder (MDD) and bipolar disorder (BD). This study aimed to examine whether the dysregulation of complement components contributes to brain structural defects in patients with mood disorders.

Methods

A total of 52 BD patients, 35 MDD patients, and 53 controls were recruited. The human complement immunology assay was used to measure the levels of complement factors. Whole brain-based analysis was performed to investigate differences in gray matter volume (GMV) and cortical thickness (CT) among the BD, MDD, and control groups, and relationships were explored between neuroanatomical differences and levels of complement components.

Results

GMV in the medial orbital frontal cortex (mOFC) and middle cingulum was lower in both patient groups than in controls, while the CT of the left precentral gyrus and left superior frontal gyrus were affected differently in the two disorders. Concentrations of C1q, C4, factor B, factor H, and properdin were higher in both patient groups than in controls, while concentrations of C3, C4 and factor H were significantly higher in BD than in MDD. Concentrations of C1q, factor H, and properdin showed a significant negative correlation with GMV in the mOFC at the voxel-wise level.

Conclusions

BD and MDD are associated with shared and different alterations in levels of complement factors and structural impairment in the brain. Structural defects in mOFC may be associated with elevated levels of certain complement factors, providing insight into the shared neuro-inflammatory pathogenesis of mood disorders.

Type
Original Article
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

These authors contributed equally to this work.

References

Akcan, U., Karabulut, S., İsmail Küçükali, C., Çakır, S., & Tüzün, E. (2018). Bipolar disorder patients display reduced serum complement levels and elevated peripheral blood complement expression levels. Acta Neuropsychiatrica, 30(2), 7078. doi: 10.1017/neu.2017.10CrossRefGoogle ScholarPubMed
Bai, Y. M., Chen, M. H., Hsu, J. W., Huang, K. L., Tu, P. C., Chang, W. C., … Tsai, S. J. (2020). A comparison study of metabolic profiles, immunity, and brain gray matter volumes between patients with bipolar disorder and depressive disorder. Journal of Neuroinflammation, 17(1), 42. doi: 10.1186/s12974-020-1724-9CrossRefGoogle ScholarPubMed
Batail, J. M., Coloigner, J., Soulas, M., Robert, G., Barillot, C., & Drapier, D. (2020). Structural abnormalities associated with poor outcome of a major depressive episode: The role of thalamus. Psychiatry Research: Neuroimaging, 305, 111158. doi: 10.1016/j.pscychresns.2020.111158CrossRefGoogle Scholar
Belleau, E. L., Treadway, M. T., & Pizzagalli, D. A. (2019). The impact of stress and major depressive disorder on hippocampal and medial prefrontal cortex morphology. Biological Psychiatry, 85(6), 443453. doi: 10.1016/j.biopsych.2018.09.031CrossRefGoogle ScholarPubMed
Berk, M., Kapczinski, F., Andreazza, A. C., Dean, O. M., Giorlando, F., Maes, M., … Malhi, G. S. (2011). Pathways underlying neuroprogression in bipolar disorder: Focus on inflammation, oxidative stress and neurotrophic factors. Neuroscience & Biobehavioral Reviews, 35(3), 804817. doi: 10.1016/j.neubiorev.2010.10.001CrossRefGoogle ScholarPubMed
Berk, M., Wadee, A. A., Kuschke, R. H., & O'Neill-Kerr, A. (1997). Acute phase proteins in major depression. Journal of Psychosomatic Research, 43(5), 529534. doi: 10.1016/s0022-3999(97)00139-6CrossRefGoogle ScholarPubMed
Bulut, N. S., Yorguner, N., & Çarkaxhiu Bulut, G. (2021). The severity of inflammation in major neuropsychiatric disorders: Comparison of neutrophil-lymphocyte and platelet-lymphocyte ratios between schizophrenia, bipolar mania, bipolar depression, major depressive disorder, and obsessive compulsive disorder. Nordic Journal of Psychiatry, 75(8), 624632. doi: 10.1080/08039488.2021.1919201CrossRefGoogle Scholar
Chang, H. H., Wang, T. Y., Lee, I. H., Lee, S. Y., Chen, K. C., Huang, S. Y., … Chen, P. S. (2017). C-reactive protein: A differential biomarker for major depressive disorder and bipolar II disorder. The World Journal of Biological Psychiatry, 18(1), 6370. doi: 10.3109/15622975.2016.1155746CrossRefGoogle ScholarPubMed
Chen, J. Y., Cortes, C., & Ferreira, V. P. (2018a). Properdin: A multifaceted molecule involved in inflammation and diseases. Molecular Immunology, 102, 5872. doi: 10.1016/j.molimm.2018.05.018CrossRefGoogle ScholarPubMed
Chen, L., Wang, Y., Niu, C., Zhong, S., Hu, H., Chen, P., … Huang, R. (2018b). Common and distinct abnormal frontal-limbic system structural and functional patterns in patients with major depression and bipolar disorder. NeuroImage: Clinical, 20, 4250. doi: 10.1016/j.nicl.2018.07.002CrossRefGoogle ScholarPubMed
Chenji, S., Jha, S., Lee, D., Brown, M., Seres, P., Mah, D., & Kalra, S. (2016). Investigating default mode and sensorimotor network connectivity in amyotrophic lateral sclerosis. PLOS ONE, 11(6), e0157443e0157443. doi: 10.1371/journal.pone.0157443CrossRefGoogle ScholarPubMed
Crider, A., Feng, T., Pandya, C. D., Davis, T., Nair, A., Ahmed, A. O., … Pillai, A. (2018). Complement component 3a receptor deficiency attenuates chronic stress-induced monocyte infiltration and depressive-like behavior. Brain. Behavior, and Immunity, 70, 246256. doi: 10.1016/j.bbi.2018.03.004CrossRefGoogle Scholar
Felger, J. C. (2017). The role of dopamine in inflammation-associated depression: Mechanisms and therapeutic implications. Current Topics in Behavioral Neurosciences, 31, 199219. doi: 10.1007/7854_2016_13CrossRefGoogle ScholarPubMed
First, M., Spitzer, R. L., Gibbon, M. L., & Williams, J. (2002). Structured clinical interview for DSM-IV-TR axis I disorders, research version. Biometrics research department. New York: New York State Psychiatric Institute.Google Scholar
Fontana, A., Storck, U., Angst, J., Dubs, R., Abegg, A., & Grob, P. J. (1980). An immunological basis of schizophrenia and affective disorders? Neuropsychobiology, 6(5), 284289. doi: 10.1159/000117771CrossRefGoogle ScholarPubMed
Fung, G., Deng, Y., Zhao, Q., Li, Z., Qu, M., Li, K., … Chan, R. C. (2015). Distinguishing bipolar and major depressive disorders by brain structural morphometry: A pilot study. BMC Psychiatry, 15, 298. doi: 10.1186/s12888-015-0685-5CrossRefGoogle ScholarPubMed
Gallego, J. A., Blanco, E. A., Morell, C., Lencz, T., & Malhotra, A. K. (2021). Complement component C4 levels in the cerebrospinal fluid and plasma of patients with schizophrenia. Neuropsychopharmacology, 46(6), 11401144. doi: 10.1038/s41386-020-00867-6CrossRefGoogle ScholarPubMed
Gitlin, M. (2006). Treatment-resistant bipolar disorder. Molecular Psychiatry, 11(3), 227240. doi: 10.1038/sj.mp.4001793CrossRefGoogle ScholarPubMed
Hamilton, M. (1960). A rating scale for depression. Journal of Neurology, Neurosurgery and Psychiatry, 23(1), 5662. doi: 10.1136/jnnp.23.1.56CrossRefGoogle ScholarPubMed
Han, K.-M., De Berardis, D., Fornaro, M., & Kim, Y.-K. (2019). Differentiating between bipolar and unipolar depression in functional and structural MRI studies. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 91, 2027. doi: 10.1016/j.pnpbp.2018.03.022CrossRefGoogle ScholarPubMed
Hanford, L. C., Nazarov, A., Hall, G. B., & Sassi, R. B. (2016). Cortical thickness in bipolar disorder: A systematic review. Bipolar Disorders, 18(1), 418. doi: 10.1111/bdi.12362CrossRefGoogle ScholarPubMed
Hasin, D. S., Goodwin, R. D., Stinson, F. S., & Grant, B. F. (2005). Epidemiology of major depressive disorder: Results from the national epidemiologic survey on alcoholism and related conditions. Archives of General Psychiatry, 62(10), 10971106. doi: 10.1001/archpsyc.62.10.1097CrossRefGoogle ScholarPubMed
Hong, W., Zhao, Z., Wang, D., Li, M., Tang, C., Li, Z., … Chan, C. C. H. (2020). Altered gray matter volumes in post-stroke depressive patients after subcortical stroke. NeuroImage: Clinical, 26, 102224. doi: 10.1016/j.nicl.2020.102224CrossRefGoogle ScholarPubMed
Kong, L., Herold, C. J., Zöllner, F., Salat, D. H., Lässer, M. M., Schmid, L. A., … Schröder, J. (2015). Comparison of grey matter volume and thickness for analysing cortical changes in chronic schizophrenia: A matter of surface area, grey/white matter intensity contrast, and curvature. Psychiatry Research: Neuroimaging, 231(2), 176183. doi: 10.1016/j.pscychresns.2014.12.004CrossRefGoogle ScholarPubMed
Kopczynska, M., Zelek, W., Touchard, S., Gaughran, F., Di Forti, M., Mondelli, V., … Morgan, B. P. (2019). Complement system biomarkers in first episode psychosis. Schizophrenia Research, 204, 1622. doi: 10.1016/j.schres.2017.12.012CrossRefGoogle ScholarPubMed
Kopczynska, M., Zelek, W. M., Vespa, S., Touchard, S., Wardle, M., Loveless, S., … Morgan, B. P. (2018). Complement system biomarkers in epilepsy. Seizure - European Journal of Epilepsy, 60, 17. doi: 10.1016/j.seizure.2018.05.016CrossRefGoogle ScholarPubMed
Kronfol, Z., & House, J. D. (1989). Lymphocyte mitogenesis, immunoglobulin and complement levels in depressed patients and normal controls. Acta Psychiatrica Scandinavica, 80(2), 142147. doi: 10.1111/j.1600-0447.1989.tb01316.xCrossRefGoogle ScholarPubMed
Lan, M. J., Chhetry, B. T., Oquendo, M. A., Sublette, M. E., Sullivan, G., Mann, J. J., & Parsey, R. V. (2014). Cortical thickness differences between bipolar depression and major depressive disorder. Bipolar Disorders, 16(4), 378388. doi: 10.1111/bdi.12175CrossRefGoogle ScholarPubMed
Lanz, T. A., Reinhart, V., Sheehan, M. J., Rizzo, S. J. S., Bove, S. E., James, L. C., … Kleiman, R. J. (2019). Postmortem transcriptional profiling reveals widespread increase in inflammation in schizophrenia: A comparison of prefrontal cortex, striatum, and hippocampus among matched tetrads of controls with subjects diagnosed with schizophrenia, bipolar or major depressive disorder. Translational Psychiatry, 9(1), 151. doi: 10.1038/s41398-019-0492-8CrossRefGoogle ScholarPubMed
Leonard, B. E. (2018). Inflammation and depression: A causal or coincidental link to the pathophysiology? Acta Neuropsychiatrica, 30(1), 116. doi: 10.1017/neu.2016.69CrossRefGoogle ScholarPubMed
MacDonald, K., Krishnan, A., Cervenka, E., Hu, G., Guadagno, E., & Trakadis, Y. (2019). Biomarkers for major depressive and bipolar disorders using metabolomics: A systematic review. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 180(2), 122137. doi: 10.1002/ajmg.b.32680CrossRefGoogle ScholarPubMed
Maes, M., Delange, J., Ranjan, R., Meltzer, H. Y., Desnyder, R., Cooremans, W., & Scharpé, S. (1997). Acute phase proteins in schizophrenia, mania and major depression: Modulation by psychotropic drugs. Psychiatry Research, 66(1), 111. doi: 10.1016/s0165-1781(96)02915-0CrossRefGoogle ScholarPubMed
McEwen, B. S., & Morrison, J. H. (2013). The brain on stress: Vulnerability and plasticity of the prefrontal cortex over the life course. Neuron, 79(1), 1629. doi: 10.1016/j.neuron.2013.06.028CrossRefGoogle ScholarPubMed
Merikangas, K. R., Akiskal, H. S., Angst, J., Greenberg, P. E., Hirschfeld, R. M. A., Petukhova, M., & Kessler, R. C. (2007). Lifetime and 12-month prevalence of bipolar spectrum disorder in the national comorbidity survey replication. Archives of General Psychiatry, 64(5), 543552. doi: 10.1001/archpsyc.64.5.543CrossRefGoogle ScholarPubMed
Moreno, C., Hasin, D. S., Arango, C., Oquendo, M. A., Vieta, E., Liu, S., … Blanco, C. (2012). Depression in bipolar disorder versus major depressive disorder: Results from the national epidemiologic survey on alcohol and related conditions. Bipolar Disorders, 14(3), 271282. doi: 10.1111/j.1399-5618.2012.01009.xCrossRefGoogle ScholarPubMed
Muneer, A. (2016). Bipolar disorder: Role of inflammation and the development of disease biomarkers. Psychiatry Investigation, 13(1), 1833. doi: 10.4306/pi.2016.13.1.18CrossRefGoogle Scholar
Nie, X., Kitaoka, S., Tanaka, K., Segi-Nishida, E., Imoto, Y., Ogawa, A., … Furuyashiki, T. (2018). The innate immune receptors TLR2/4 mediate repeated social defeat stress-induced social avoidance through prefrontal microglial activation. Neuron, 99(3), 464479, e467. doi: 10.1016/j.neuron.2018.06.035CrossRefGoogle ScholarPubMed
Nilsson, B., & Ekdahl, K. N. (2012). Complement diagnostics: Concepts, indications, and practical guidelines. Clinical & Developmental Immunology, 2012, 962702962702. doi: 10.1155/2012/962702CrossRefGoogle ScholarPubMed
Niu, M., Wang, Y., Jia, Y., Wang, J., Zhong, S., Lin, J., … Huang, R. (2017). Common and specific abnormalities in cortical thickness in patients with major depressive and bipolar disorders. EBioMedicine, 16, 162171. doi: 10.1016/j.ebiom.2017.01.010CrossRefGoogle ScholarPubMed
Noris, M., & Remuzzi, G. (2013). Overview of complement activation and regulation. Seminars in Nephrology, 33(6), 479492. doi: 10.1016/j.semnephrol.2013.08.001CrossRefGoogle ScholarPubMed
O'Connell, K. S., Sønderby, I. E., Frei, O., van der Meer, D., Athanasiu, L., Smeland, O. B., … Djurovic, S. (2021). Association between complement component 4A expression, cognitive performance and brain imaging measures in UK Biobank. Psychological Medicine, 3, 111. doi: 10.1017/s0033291721000179.Google Scholar
Opel, N., Goltermann, J., Hermesdorf, M., Berger, K., Baune, B. T., & Dannlowski, U. (2020). Cross-disorder analysis of brain structural abnormalities in six major psychiatric disorders: A secondary analysis of mega- and meta-analytical findings from the ENIGMA consortium. Biological Psychiatry, 88(9), 678686. doi: 10.1016/j.biopsych.2020.04.027CrossRefGoogle ScholarPubMed
Parker, G. (2014). The DSM-5 classification of mood disorders: Some fallacies and fault lines. Acta Psychiatrica Scandinavica, 129(6), 404409. doi: 10.1111/acps.12253CrossRefGoogle ScholarPubMed
Pillai, A., Bruno, D., Nierenberg, J., Pandya, C., Feng, T., Reichert, C., … Pomara, N. (2019). Complement component 3 levels in the cerebrospinal fluid of cognitively intact elderly individuals with major depressive disorder. Biomarkers in Neuropsychiatry, 1, 100007. doi: 10.1016/j.bionps.2019.100007CrossRefGoogle ScholarPubMed
Reginia, A., Kucharska-Mazur, J., Jabłoński, M., Budkowska, M., Dołȩgowska, B., Sagan, L., … Samochowiec, J. (2018). Assessment of complement cascade components in patients with bipolar disorder. Frontiers in Psychiatry, 9, 614614. doi: 10.3389/fpsyt.2018.00614CrossRefGoogle ScholarPubMed
Reid, K. B. M. (2018). Complement component C1q: Historical perspective of a functionally versatile, and structurally unusual, serum protein. Frontiers in Immunology, 9, 764. doi: 10.3389/fimmu.2018.00764CrossRefGoogle ScholarPubMed
Rey, R., Suaud-Chagny, M. F., Bohec, A. L., Dorey, J. M., d'Amato, T., Tamouza, R., & Leboyer, M. (2020). Overexpression of complement component C4 in the dorsolateral prefrontal cortex, parietal cortex, superior temporal gyrus and associative striatum of patients with schizophrenia. Brain. Behavior, and Immunity, 90, 216225. doi: 10.1016/j.bbi.2020.08.019CrossRefGoogle Scholar
Rosenblat, J. D., Kakar, R., Berk, M., Kessing, L. V., Vinberg, M., Baune, B. T., … McIntyre, R. S. (2016). Anti-inflammatory agents in the treatment of bipolar depression: A systematic review and meta-analysis. Bipolar Disorders, 18(2), 89101. doi: 10.1111/bdi.12373CrossRefGoogle ScholarPubMed
Savitz, J. B., Price, J. L., & Drevets, W. C. (2014). Neuropathological and neuromorphometric abnormalities in bipolar disorder: View from the medial prefrontal cortical network. Neuroscience & Biobehavioral Reviews, 42, 132147. doi: 10.1016/j.neubiorev.2014.02.008CrossRefGoogle ScholarPubMed
Schulze, T. G., Akula, N., Breuer, R., Steele, J., Nalls, M. A., Singleton, A. B., … McMahon, F. J. (2014). Molecular genetic overlap in bipolar disorder, schizophrenia, and major depressive disorder. The World Journal of Biological Psychiatry, 15(3), 200208. doi: 10.3109/15622975.2012.662282CrossRefGoogle ScholarPubMed
Sekar, A., Bialas, A. R., de Rivera, H., Davis, A., Hammond, T. R., Kamitaki, N., … McCarroll, S. A. (2016). Schizophrenia risk from complex variation of complement component 4. Nature, 530(7589), 177183. doi: 10.1038/nature16549CrossRefGoogle ScholarPubMed
Shin, C., Ham, B. J., Ko, Y. H., Pae, C. U., Park, M. H., Steffens, D. C., … Han, C. (2019). Increased plasma complement factor H is associated with geriatric depression. International Psychogeriatrics, 31(1), 101108. doi: 10.1017/s1041610218000558CrossRefGoogle ScholarPubMed
Solmi, M., Suresh Sharma, M., Osimo, E. F., Fornaro, M., Bortolato, B., Croatto, G., … Carvalho, A. F. (2021). Peripheral levels of C-reactive protein, tumor necrosis factor-α, interleukin-6, and interleukin-1β across the mood spectrum in bipolar disorder: A meta-analysis of mean differences and variability. Brain, Behavior, and Immunity, 97, 193203. doi: 10.1016/j.bbi.2021.07.014CrossRefGoogle ScholarPubMed
Swardfager, W., Rosenblat, J. D., Benlamri, M., & McIntyre, R. S. (2016). Mapping inflammation onto mood: Inflammatory mediators of anhedonia. Neuroscience & Biobehavioral Reviews, 64, 148166. doi: 10.1016/j.neubiorev.2016.02.017CrossRefGoogle ScholarPubMed
Tseng, H. H., Chang, H. H., Wei, S. Y., Lu, T. H., Hsieh, Y. T., Yang, Y. K., & Chen, P. S. (2021). Peripheral inflammation is associated with dysfunctional corticostriatal circuitry and executive dysfunction in bipolar disorder patients. Brain, Behavior, and Immunity, 91, 695702. doi: 10.1016/j.bbi.2020.09.010CrossRefGoogle ScholarPubMed
Wadee, A. A., Kuschke, R. H., Wood, L. A., Berk, M., Ichim, L., & Maes, M. (2002). Serological observations in patients suffering from acute manic episodes. Human Psychopharmacology: Clinical and Experimental, 17(4), 175179. doi: 10.1002/hup.390CrossRefGoogle ScholarPubMed
Wechsler, D. (1981). WAIS-R Manual: Wechsler adult intelligence scale-revised. London: Psychological Corporation.Google Scholar
Wei, J., Liu, Y., Zhao, L., Yang, X., Ni, P., Wang, Y., … Ma, X. (2018). Plasma complement component 4 increases in patients with major depressive disorder. Neuropsychiatric Disease and Treatment, 14, 3741. doi: 10.2147/ndt.S151238CrossRefGoogle ScholarPubMed
Wise, T., Radua, J., Via, E., Cardoner, N., Abe, O., Adams, T. M., … Arnone, D. (2017). Common and distinct patterns of grey-matter volume alteration in major depression and bipolar disorder: Evidence from voxel-based meta-analysis. Molecular Psychiatry, 22(10), 14551463. doi: 10.1038/mp.2016.72CrossRefGoogle ScholarPubMed
Woo, J. J., Pouget, J. G., Zai, C. C., & Kennedy, J. L. (2020). The complement system in schizophrenia: Where are we now and what's next? Molecular Psychiatry, 25(1), 114130. doi: 10.1038/s41380-019-0479-0CrossRefGoogle ScholarPubMed
Wu, T., Dejanovic, B., Gandham, V. D., Gogineni, A., Edmonds, R., Schauer, S., … Hanson, J. E. (2019). Complement C3 is activated in human AD brain and is required for neurodegeneration in mouse models of amyloidosis and tauopathy. Cell Reports, 28(8), 21112123, e2116. doi: 10.1016/j.celrep.2019.07.060CrossRefGoogle ScholarPubMed
Yang, X., Tao, H., Xiao, L., Li, C., Tang, Y., & Liu, Y. (2018). Increased Serum C3 and decreased UA in patients of bipolar disorder in Chinese Han population. Frontiers in Psychiatry, 9, 381. doi: 10.3389/fpsyt.2018.00381CrossRefGoogle ScholarPubMed
Yang, Y., Liu, S., Jiang, X., Yu, H., Ding, S., Lu, Y., … Lv, L. (2019). Common and specific functional activity features in schizophrenia, major depressive disorder, and bipolar disorder. Frontiers in Psychiatry, 10, 52. doi: 10.3389/fpsyt.2019.00052CrossRefGoogle ScholarPubMed
Yao, Q., & Li, Y. (2020). Increased serum levels of complement C1q in major depressive disorder. Journal of Psychosomatic Research, 133, 110105. doi: 10.1016/j.jpsychores.2020.110105CrossRefGoogle ScholarPubMed
Young, R. C., Biggs, J. T., Ziegler, V. E., & Meyer, D. A. (1978). A rating scale for mania: Reliability, validity and sensitivity. The British Journal of Psychiatry, 133(5), 429435. doi: 10.1192/bjp.133.5.429CrossRefGoogle ScholarPubMed
Zhang, C., Lv, Q., Fan, W., Tang, W., & Yi, Z. (2017a). Influence of CFH gene on symptom severity of schizophrenia. Neuropsychiatric Disease and Treatment, 13, 697706. doi: 10.2147/ndt.S132108CrossRefGoogle ScholarPubMed
Zhang, J., Wu, Y.-L., Su, J., Yao, Q., Wang, M., Li, G.-F., … Du, X. (2017b). Assessment of gray and white matter structural alterations in migraineurs without aura. The Journal of Headache and Pain, 18(1), 74. doi: 10.1186/s10194-017-0783-5CrossRefGoogle ScholarPubMed
Zhang, X., Kimura, Y., Fang, C., Zhou, L., Sfyroera, G., Lambris, J. D., … Song, W. C. (2007). Regulation of toll-like receptor-mediated inflammatory response by complement in vivo. Blood, 110(1), 228236. doi: 10.1182/blood-2006-12-063636CrossRefGoogle ScholarPubMed
Supplementary material: File

Yu et al. supplementary material

Yu et al. supplementary material 1

Download Yu et al. supplementary material(File)
File 125 KB
Supplementary material: PDF

Yu et al. supplementary material

Yu et al. supplementary material 2

Download Yu et al. supplementary material(PDF)
PDF 378.3 KB