Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-07T22:04:32.830Z Has data issue: false hasContentIssue false

Brain function mediates the association between low vitamin D and neurocognitive status in female patients with major depressive disorder

Published online by Cambridge University Press:  01 April 2022

Wenming Zhao
Affiliation:
Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
Dao-min Zhu
Affiliation:
Department of Sleep Disorders, Affiliated Psychological Hospital of Anhui Medical University, Hefei 230022, China Hefei Fourth People's Hospital, Hefei 230022, China Anhui Mental Health Center, Hefei 230022, China
Qian Li
Affiliation:
Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
Xiaotao Xu
Affiliation:
Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
Yu Zhang
Affiliation:
Department of Sleep Disorders, Affiliated Psychological Hospital of Anhui Medical University, Hefei 230022, China Hefei Fourth People's Hospital, Hefei 230022, China Anhui Mental Health Center, Hefei 230022, China
Cun Zhang
Affiliation:
Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
Jiajia Zhu*
Affiliation:
Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
Yongqiang Yu*
Affiliation:
Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
*
Author for correspondence: Yongqiang Yu, E-mail: cjr.yuyongqiang@vip.163.com; Jiajia Zhu, E-mail: zhujiajiagraduate@163.com
Author for correspondence: Yongqiang Yu, E-mail: cjr.yuyongqiang@vip.163.com; Jiajia Zhu, E-mail: zhujiajiagraduate@163.com

Abstract

Background

Vitamin D is engaged in various neural processes, with low vitamin D linked to depression and cognitive dysfunction. There are gender differences in depression and vitamin D level. However, the relationship between depression, gender, vitamin D, cognition, and brain function has yet to be determined.

Methods

One hundred and twenty-two patients with major depressive disorder (MDD) and 119 healthy controls underwent resting-state functional MRI and fractional amplitude of low-frequency fluctuations (fALFF) was calculated to assess brain function. Serum concentration of vitamin D (SCVD) and cognition (i.e. prospective memory and sustained attention) were also measured.

Results

We found a significant group-by-gender interaction effect on SCVD whereby MDD patients showed a reduction in SCVD relative to controls in females but not males. Concurrently, there was a female-specific association of SCVD with cognition and MDD-related fALFF alterations in widespread brain regions. Remarkably, MDD- and SCVD-related fALFF changes mediated the relation between SCVD and cognition in females.

Conclusion

Apart from providing insights into the neural mechanisms by which low vitamin D contributes to cognitive impairment in MDD in a gender-dependent manner, these findings might have clinical implications for assignment of female patients with MDD and cognitive dysfunction to adjuvant vitamin D supplementation therapy, which may ultimately advance a precision approach to personalized antidepressant choice.

Type
Original Article
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

These authors contributed equally to this work.

References

Aghajafari, F., Letourneau, N., Mahinpey, N., Cosic, N., & Giesbrecht, G. (2018). Vitamin D deficiency and antenatal and postpartum depression: A systematic review. Nutrients, 10(4), 478. 10.3390/nu10040478.CrossRefGoogle ScholarPubMed
Ahokas, A., Kaukoranta, J., Wahlbeck, K., & Aito, M. (2001). Estrogen deficiency in severe postpartum depression: Successful treatment with sublingual physiologic 17beta-estradiol: A preliminary study. The Journal of Clinical Psychiatry, 62(5), 332336. doi: 10.4088/jcp.v62n0504.CrossRefGoogle ScholarPubMed
Alghamdi, S., Alsulami, N., Khoja, S., Alsufiani, H., Tayeb, H. O., & Tarazi, F. I. (2020). Vitamin D supplementation ameliorates severity of major depressive disorder. Journal of Molecular Meuroscience: MN, 70(2), 230235. doi:10.1007/s12031-019-01461-2.Google ScholarPubMed
Ali, P., Labriffe, M., Navasiolava, N., Custaud, M. A., Dinomais, M., & Annweiler, C. (2020). Vitamin D concentration and focal brain atrophy in older adults: A voxel-based morphometric study. Annals of Clinical and Translational Neurology, 7(4), 554558. doi: 10.1002/acn3.50997.CrossRefGoogle ScholarPubMed
Anglin, R. E., Samaan, Z., Walter, S. D., & McDonald, S. D. (2013). Vitamin D deficiency and depression in adults: Systematic review and meta-analysis. The British Journal of Psychiatry: The Journal of Mental Science, 202, 100107. doi: 10.1192/bjp.bp.111.106666.CrossRefGoogle ScholarPubMed
Annweiler, C., Annweiler, T., Montero-Odasso, M., Bartha, R., & Beauchet, O. (2014). Vitamin D and brain volumetric changes: Systematic review and meta-analysis. Maturitas, 78(1), 3039. doi: 10.1016/j.maturitas.2014.02.013.CrossRefGoogle ScholarPubMed
Annweiler, C., Montero-Odasso, M., Llewellyn, D. J., Richard-Devantoy, S., Duque, G., & Beauchet, O. (2013). Meta-analysis of memory and executive dysfunctions in relation to vitamin D. Journal of Alzheimer's Disease: JAD, 37(1), 147171. doi: 10.3233/JAD-130452.CrossRefGoogle ScholarPubMed
Ashburner, J. (2007). A fast diffeomorphic image registration algorithm. NeuroImage, 38(1), 95113. doi: 10.1016/j.neuroimage.2007.07.007.CrossRefGoogle ScholarPubMed
Balion, C., Griffith, L. E., Strifler, L., Henderson, M., Patterson, C., Heckman, G., … Raina, P. (2012). Vitamin D, cognition, and dementia: A systematic review and meta-analysis. Neurology, 79(13), 13971405. doi: 10.1212/WNL.0b013e31826c197f.CrossRefGoogle ScholarPubMed
Bangasser, D. A., & Valentino, R. J. (2014). Sex differences in stress-related psychiatric disorders: Neurobiological perspectives. Frontiers in Neuroendocrinology, 35(3), 303319. doi: 10.1016/j.yfrne.2014.03.008.CrossRefGoogle ScholarPubMed
Bebbington, P. E., Dunn, G., Jenkins, R., Lewis, G., Brugha, T., Farrell, M., & Meltzer, H. (1998). The influence of age and sex on the prevalence of depressive conditions: Report from the National Survey of Psychiatric Morbidity. Psychological Medicine, 28(1), 919. doi: 10.1017/s0033291797006077.CrossRefGoogle ScholarPubMed
Biswal, B., Yetkin, F. Z., Haughton, V. M., & Hyde, J. S. (1995). Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magnetic Resonance in Medicine, 34(4), 537541. doi: 10.1002/mrm.1910340409.CrossRefGoogle ScholarPubMed
Booij, L., Van der Does, A. J., & Riedel, W. J. (2003). Monoamine depletion in psychiatric and healthy populations: Review. Molecular Psychiatry, 8(12), 951973. doi: 10.1038/sj.mp.4001423.CrossRefGoogle ScholarPubMed
Bortolato, B., Miskowiak, K. W., Kohler, C. A., Maes, M., Fernandes, B. S., Berk, M., & Carvalho, A. F. (2016). Cognitive remission: A novel objective for the treatment of major depression? BMC Medicine, 14, 9. doi: 10.1186/s12916-016-0560-3.CrossRefGoogle ScholarPubMed
Briggs, R., McCarroll, K., O’'Halloran, A., Healy, M., Kenny, R. A., & Laird, E. (2019). Vitamin D deficiency is associated with an increased likelihood of incident depression in community-dwelling older adults. Journal of the American Medical Directors Association, 20(5), 517523. doi: 10.1016/j.jamda.2018.10.006.CrossRefGoogle ScholarPubMed
Casseb, G. A. S., Kaster, M. P., & Rodrigues, A. L. S. (2019). Potential role of vitamin D for the management of depression and anxiety. CNS Drugs, 33(7), 619637. doi: 10.1007/s40263-019-00640-4.CrossRefGoogle ScholarPubMed
Cheng, Y. C., Huang, Y. C., & Huang, W. L. (2020). The effect of vitamin D supplement on negative emotions: A systematic review and meta-analysis. Depression and Anxiety, 37(6), 549564. doi: 10.1002/da.23025.CrossRefGoogle ScholarPubMed
Choi, J. H., Lee, B., Lee, J. Y., Kim, C. H., Park, B., Kim, D. Y., … Park, D. Y. (2020). Relationship between sleep duration, sun exposure, and serum 25-hydroxyvitamin D status: A cross-sectional study. Scientific Reports, 10(1), 4168. doi: 10.1038/s41598-020-61061-8.CrossRefGoogle ScholarPubMed
Cipriani, A., Furukawa, T. A., Salanti, G., Chaimani, A., Atkinson, L. Z., Ogawa, Y., … Geddes, J. R. (2018). Comparative efficacy and acceptability of 21 antidepressant drugs for the acute treatment of adults with major depressive disorder: A systematic review and network meta-analysis. The Lancet, 391(10128), 13571366. doi: 10.1016/s0140-6736(17)32802-7.CrossRefGoogle ScholarPubMed
Cona, G., Scarpazza, C., Sartori, G., Moscovitch, M., & Bisiacchi, P. S. (2015). Neural bases of prospective memory: A meta-analysis and the ‘Attention to Delayed Intention’ (AtoDI) model. Neuroscience and Biobehavioral Reviews, 52, 2137. doi: 10.1016/j.neubiorev.2015.02.007.CrossRefGoogle ScholarPubMed
Cornblatt, B. A., Risch, N. J., Faris, G., Friedman, D., & Erlenmeyer-Kimling, L. (1988). The Continuous Performance Test, identical pairs version (CPT-IP): I. New findings about sustained attention in normal families. Psychiatry Research, 26(2), 223238. doi: 10.1016/0165-1781(88)90076-5.CrossRefGoogle ScholarPubMed
de Koning, E. J., van Schoor, N. M., Penninx, B. W., Elders, P. J., Heijboer, A. C., Smit, J. H., … Lips, P. (2015). Vitamin D supplementation to prevent depression and poor physical function in older adults: Study protocol of the D-Vitaal study, a randomized placebo-controlled clinical trial. BMC Geriatrics, 15, 151. doi: 10.1186/s12877-015-0148-3.CrossRefGoogle ScholarPubMed
Didriksen, A., Burild, A., Jakobsen, J., Fuskevåg, O. M., & Jorde, R. (2015). Vitamin D3 increases in abdominal subcutaneous fat tissue after supplementation with vitamin D3. European Journal of Endocrinology, 172(3), 235241. doi: 10.1530/eje-14-0870.CrossRefGoogle ScholarPubMed
Di Somma, C., Scarano, E., Barrea, L., Zhukouskaya, V. V., Savastano, S., Mele, C., … Marzullo, P. (2017). Vitamin D and neurological diseases: An endocrine view. International Journal of Molecular Sciences, 18(11), 2482. 10.3390/ijms18112482.CrossRefGoogle ScholarPubMed
Einstein, G. O., & McDaniel, M. A. (1990). Normal aging and prospective memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 16(4), 717726. doi: 10.1037//0278-7393.16.4.717.Google ScholarPubMed
Eisner, B. H., Zargooshi, J., Berger, A. D., Cooperberg, M. R., Doyle, S. M., Sheth, S., & Stoller, M. L. (2010). Gender differences in subcutaneous and perirenal fat distribution. Surgical and Radiologic Anatomy: SRA, 32(9), 879882. doi: 10.1007/s00276-010-0692-7.CrossRefGoogle ScholarPubMed
Eyles, D. W., Burne, T. H., & McGrath, J. J. (2013). Vitamin D, effects on brain development, adult brain function and the links between low levels of vitamin D and neuropsychiatric disease. Frontiers in Neuroendocrinology, 34(1), 4764. doi: 10.1016/j.yfrne.2012.07.001.CrossRefGoogle ScholarPubMed
Eyles, D. W., Smith, S., Kinobe, R., Hewison, M., & McGrath, J. J. (2005). Distribution of the vitamin D receptor and 1 alpha-hydroxylase in human brain. Journal of Chemical Neuroanatomy, 29(1), 2130. doi: 10.1016/j.jchemneu.2004.08.006.CrossRefGoogle ScholarPubMed
Faul, F., Erdfelder, E., Lang, A. G., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175191. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/17695343.CrossRefGoogle ScholarPubMed
Faurschou, A., Beyer, D. M., Schmedes, A., Bogh, M. K., Philipsen, P. A., & Wulf, H. C. (2012). The relation between sunscreen layer thickness and vitamin D production after ultraviolet B exposure: A randomized clinical trial. The British Journal of Dermatology, 167(2), 391395. doi: 10.1111/j.1365-2133.2012.11004.x.CrossRefGoogle ScholarPubMed
Fernandez-Guasti, A., Fiedler, J. L., Herrera, L., & Handa, R. J. (2012). Sex, stress, and mood disorders: At the intersection of adrenal and gonadal hormones. Hormone and Metabolic Research = Hormon- und Stoffwechselforschung = Hormones et metabolisme, 44(8), 607618. doi: 10.1055/s-0032-1312592.Google ScholarPubMed
Ferrari, A. J., Charlson, F. J., Norman, R. E., Patten, S. B., Freedman, G., Murray, C. J., … Whiteford, H. A. (2013). Burden of depressive disorders by country, sex, age, and year: Findings from the global burden of disease study 2010. PLoS Medicine, 10(11), e1001547. doi: 10.1371/journal.pmed.1001547.CrossRefGoogle ScholarPubMed
Fortenbaugh, F. C., DeGutis, J., & Esterman, M. (2017). Recent theoretical, neural, and clinical advances in sustained attention research. Annals of the New York Academy of Sciences, 1396(1), 7091. doi: 10.1111/nyas.13318.CrossRefGoogle ScholarPubMed
Foucault, G., Duval, G. T., Simon, R., Beauchet, O., Dinomais, M., & Annweiler, C. (2019). Serum vitamin D and cingulate cortex thickness in older adults: Quantitative MRI of the brain. Current Alzheimer Research, 16(11), 10631071. doi: 10.2174/1567205016666191113124356.CrossRefGoogle ScholarPubMed
Gonneaud, J., Rauchs, G., Groussard, M., Landeau, B., Mezenge, F., de La Sayette, V., … Desgranges, B. (2014). How do we process event-based and time-based intentions in the brain? An fMRI study of prospective memory in healthy individuals. Human Brain Mapping, 35(7), 30663082. doi: 10.1002/hbm.22385.CrossRefGoogle Scholar
Gordon, J. L., & Girdler, S. S. (2014). Hormone replacement therapy in the treatment of perimenopausal depression. Current Psychiatry Reports, 16(12), 517. doi: 10.1007/s11920-014-0517-1.CrossRefGoogle ScholarPubMed
Gowda, U., Mutowo, M. P., Smith, B. J., Wluka, A. E., & Renzaho, A. M. (2015). Vitamin D supplementation to reduce depression in adults: Meta-analysis of randomized controlled trials. Nutrition, 31(3), 421429. doi: 10.1016/j.nut.2014.06.017.CrossRefGoogle ScholarPubMed
Guo, T., Xiang, Y. T., Xiao, L., Hu, C. Q., Chiu, H. F., Ungvari, G. S., … Wang, G. (2015). Measurement-based care versus standard care for major depression: A randomized controlled trial with blind raters. The American Journal of Psychiatry, 172(10), 10041013. doi: 10.1176/appi.ajp.2015.14050652.CrossRefGoogle ScholarPubMed
Guo, W., Liu, F., Zhang, J., Zhang, Z., Yu, L., Liu, J., … Xiao, C. (2013). Dissociation of regional activity in the default mode network in first-episode, drug-naive major depressive disorder at rest. Journal of Affective Disorders, 151(3), 10971101. doi: 10.1016/j.jad.2013.09.003.CrossRefGoogle ScholarPubMed
Han, G., Klimes-Dougan, B., Jepsen, S., Ballard, K., Nelson, M., Houri, A., … Cullen, K. (2012). Selective neurocognitive impairments in adolescents with major depressive disorder. Journal of Adolescence, 35(1), 1120. doi: 10.1016/j.adolescence.2011.06.009.CrossRefGoogle ScholarPubMed
Hayes, A. F. (2009). Beyond Baron and Kenny: Statistical mediation analysis in the new millennium. Communication Monographs, 76(4), 408420. doi: 10.1080/03637750903310360.CrossRefGoogle Scholar
Hayes, A. F. (2014). Introduction to mediation, moderation, and conditional process analysis: A regression-based approach. Journal of Educational Measurement, 51(3), 335337.Google Scholar
Huang, M., Lu, S., Yu, L., Li, L., Zhang, P., Hu, J., … Xu, Y. (2017). Altered fractional amplitude of low frequency fluctuation associated with cognitive dysfunction in first-episode drug-naive major depressive disorder patients. BMC Psychiatry, 17(1), 11. doi: 10.1186/s12888-016-1190-1.CrossRefGoogle ScholarPubMed
Ju, S. Y., Lee, Y. J., & Jeong, S. N. (2013). Serum 25-hydroxyvitamin D levels and the risk of depression: A systematic review and meta-analysis. The Journal of Nutrition, Health & Aging, 17(5), 447455. doi: 10.1007/s12603-012-0418-0.CrossRefGoogle ScholarPubMed
Karakis, I., Pase, M. P., Beiser, A., Booth, S. L., Jacques, P. F., Rogers, G., … Seshadri, S. (2016). Association of serum vitamin D with the risk of incident dementia and subclinical indices of brain aging: The Framingham heart study. Journal of Alzheimer's Disease: JAD, 51(2), 451461. doi: 10.3233/JAD-150991.CrossRefGoogle ScholarPubMed
Kiecolt-Glaser, J. K., Jaremka, L. M., & Hughes, S. (2014). Psychiatry and social nutritional neuroscience. World Psychiatry, 13(2), 151152. doi: 10.1002/wps.20127.CrossRefGoogle ScholarPubMed
Kinuta, K., Tanaka, H., Moriwake, T., Aya, K., Kato, S., & Seino, Y. (2000). Vitamin D is an important factor in estrogen biosynthesis of both female and male gonads. Endocrinology, 141(4), 13171324. doi: 10.1210/endo.141.4.7403.CrossRefGoogle ScholarPubMed
Lai, C. H., & Wu, Y. T. (2015). The patterns of fractional amplitude of low-frequency fluctuations in depression patients: The dissociation between temporal regions and fronto-parietal regions. Journal of Affective Disorders, 175, 441445. doi: 10.1016/j.jad.2015.01.054.CrossRefGoogle Scholar
Lai, W. T., Deng, W. F., Xu, S. X., Zhao, J., Xu, D., Liu, Y. H., … Rong, H. (2021). Shotgun metagenomics reveals both taxonomic and tryptophan pathway differences of gut microbiota in major depressive disorder patients. Psychological Medicine, 51(1), 90101. doi: 10.1017/S0033291719003027.CrossRefGoogle ScholarPubMed
Langner, R., & Eickhoff, S. B. (2013). Sustaining attention to simple tasks: A meta-analytic review of the neural mechanisms of vigilant attention. Psychological Bulletin, 139(4), 870900. doi: 10.1037/a0030694.CrossRefGoogle ScholarPubMed
Lerner, P. P., Sharony, L., & Miodownik, C. (2018). Association between mental disorders, cognitive disturbances and vitamin D serum level: Current state. Clinical Nutrition ESPEN, 23, 89102. doi: 10.1016/j.clnesp.2017.11.011.CrossRefGoogle ScholarPubMed
Li, G., Rossbach, K., Zhang, A., Liu, P., & Zhang, K. (2018). Resting-state functional changes in the precuneus within first-episode drug-naive patients with MDD. Neuropsychiatric Disease and Treatment, 14, 19911998. doi: 10.2147/NDT.S168060.CrossRefGoogle ScholarPubMed
Liu, C. H., Ma, X., Yuan, Z., Song, L. P., Jing, B., Lu, H. Y., … Wang, C. Y. (2017). Decreased resting-state activity in the precuneus is associated with depressive episodes in recurrent depression. The Journal of Clinical Psychiatry, 78(4), e372e382. doi: 10.4088/JCP.15m10022.CrossRefGoogle ScholarPubMed
Liu, F., Guo, W., Liu, L., Long, Z., Ma, C., Xue, Z., … Chen, H. (2013). Abnormal amplitude low-frequency oscillations in medication-naive, first-episode patients with major depressive disorder: A resting-state fMRI study. Journal of Affective Disorders, 146(3), 401406. doi: 10.1016/j.jad.2012.10.001.CrossRefGoogle ScholarPubMed
Llewellyn, D. J., Lang, I. A., Langa, K. M., & Melzer, D. (2011). Vitamin D and cognitive impairment in the elderly U.S. population. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 66(1), 5965. doi: 10.1093/gerona/glq185.CrossRefGoogle ScholarPubMed
Lorenzen, M., Boisen, I. M., Mortensen, L. J., Lanske, B., Juul, A., & Blomberg Jensen, M. (2017). Reproductive endocrinology of vitamin D. Molecular and Cellular Endocrinology, 453, 103112. doi: 10.1016/j.mce.2017.03.023.CrossRefGoogle ScholarPubMed
Mayne, P. E., & Burne, T. H. J. (2019). Vitamin D in synaptic plasticity, cognitive function, and neuropsychiatric illness. Trends in Neurosciences, 42(4), 293306. doi: 10.1016/j.tins.2019.01.003.CrossRefGoogle ScholarPubMed
McDaniel, M. A., & Einstein, G. O. (2011). The neuropsychology of prospective memory in normal aging: A componential approach. Neuropsychologia, 49(8), 21472155. doi: 10.1016/j.neuropsychologia.2010.12.029.CrossRefGoogle ScholarPubMed
McFarland, C. P., & Vasterling, J. J. (2018). Prospective memory in depression: Review of an emerging field. Archives of Clinical Neuropsychology, 33(7), 912930. doi: 10.1093/arclin/acx118.CrossRefGoogle ScholarPubMed
Mikkelsen, K., Stojanovska, L., & Apostolopoulos, V. (2016). The effects of vitamin B in depression. Current Medicinal Chemistry, 23(38), 43174337. doi: 10.2174/0929867323666160920110810.CrossRefGoogle ScholarPubMed
Milaneschi, Y., Hoogendijk, W., Lips, P., Heijboer, A. C., Schoevers, R., van Hemert, A. M., … Penninx, B. W. (2014). The association between low vitamin D and depressive disorders. Molecular Psychiatry, 19(4), 444451. doi: 10.1038/mp.2013.36.CrossRefGoogle ScholarPubMed
Milaneschi, Y., Shardell, M., Corsi, A. M., Vazzana, R., Bandinelli, S., Guralnik, J. M., & Ferrucci, L. (2010). Serum 25-hydroxyvitamin D and depressive symptoms in older women and men. The Journal of Clinical Endocrinology and Metabolism, 95(7), 32253233. doi: 10.1210/jc.2010-0347.CrossRefGoogle ScholarPubMed
Miller, J. W., Harvey, D. J., Beckett, L. A., Green, R., Farias, S. T., Reed, B. R., … DeCarli, C. (2015). Vitamin D status and rates of cognitive decline in a multiethnic cohort of older adults. JAMA Neurology, 72(11), 12951303. doi: 10.1001/jamaneurol.2015.2115.CrossRefGoogle Scholar
Ngun, T. C., Ghahramani, N., Sanchez, F. J., Bocklandt, S., & Vilain, E. (2011). The genetics of sex differences in brain and behavior. Frontiers in Neuroendocrinology, 32(2), 227246. doi: 10.1016/j.yfrne.2010.10.001.CrossRefGoogle ScholarPubMed
Pan, Z., Park, C., Brietzke, E., Zuckerman, H., Rong, C., Mansur, R. B., … McIntyre, R. S. (2019). Cognitive impairment in major depressive disorder. CNS Spectrums, 24(1), 2229. doi: 10.1017/S1092852918001207.CrossRefGoogle ScholarPubMed
Parker, G., & Brotchie, H. (2011). ‘D’ for depression: Any role for vitamin D? ‘Food for thought’ II. Acta Psychiatrica Scandinavica, 124(4), 243249. doi: 10.1111/j.1600-0447.2011.01705.x.CrossRefGoogle ScholarPubMed
Parker, G. B., Brotchie, H., & Graham, R. K. (2017). Vitamin D and depression. Journal of Affective Disorders, 208, 5661. doi: 10.1016/j.jad.2016.08.082.CrossRefGoogle ScholarPubMed
Parker, G. B., & Brotchie, H. L. (2004). From diathesis to dimorphism. Journal of Nervous & Mental Disease, 192(3), 210216. doi: 10.1097/01.nmd.0000116464.60500.63.CrossRefGoogle ScholarPubMed
Patrick, R. P., & Ames, B. N. (2015). Vitamin D and the omega-3 fatty acids control serotonin synthesis and action, part 2: Relevance for ADHD, bipolar disorder, schizophrenia, and impulsive behavior. FASEB Journal, 29(6), 22072222. doi: 10.1096/fj.14-268342.CrossRefGoogle ScholarPubMed
Pavlovic, A., Abel, K., Barlow, C. E., Farrell, S. W., Weiner, M., & DeFina, L. F. (2018). The association between serum vitamin d level and cognitive function in older adults: Cooper Center Longitudinal Study. Preventive Medicine, 113, 5761. doi: 10.1016/j.ypmed.2018.05.010.CrossRefGoogle ScholarPubMed
Pettersen, J. A. (2017). Does high dose vitamin D supplementation enhance cognition? A randomized trial in healthy adults. Experimental Gerontology, 90, 9097. doi: 10.1016/j.exger.2017.01.019.CrossRefGoogle ScholarPubMed
Plozer, E., Altbacker, A., Darnai, G., Perlaki, G., Orsi, G., Nagy, S. A., … Janszky, J. (2015). Intracranial volume inversely correlates with serum 25(OH)D level in healthy young women. Nutritional Neuroscience, 18(1), 3740. doi: 10.1179/1476830514Y.0000000109.CrossRefGoogle ScholarPubMed
Qiu, H., Li, X., Luo, Q., Li, Y., Zhou, X., Cao, H., … Sun, M. (2019). Alterations in patients with major depressive disorder before and after electroconvulsive therapy measured by fractional amplitude of low-frequency fluctuations (fALFF). Journal of Affective Disorders, 244, 9299. doi: 10.1016/j.jad.2018.10.099.CrossRefGoogle ScholarPubMed
Rhee, S. J., Lee, H., & Ahn, Y. M. (2020). Serum vitamin D concentrations are associated with depressive symptoms in men: The sixth Korea National Health and Nutrition Examination Survey 2014. Frontiers in Psychiatry, 11, 756. doi: 10.3389/fpsyt.2020.00756.CrossRefGoogle ScholarPubMed
Ringe, J. D., & Kipshoven, C. (2012). Vitamin D-insufficiency: An estimate of the situation in Germany. Dermato-Endocrinology, 4(1), 7280. doi: 10.4161/derm.19829.CrossRefGoogle ScholarPubMed
Rock, P. L., Roiser, J. P., Riedel, W. J., & Blackwell, A. D. (2014). Cognitive impairment in depression: A systematic review and meta-analysis. Psychological Medicine, 44(10), 20292040. doi: 10.1017/S0033291713002535.CrossRefGoogle ScholarPubMed
Roy, N. M. (2021). Impact of vitamin D on neurocognitive function in dementia, depression, schizophrenia and ADHD. Frontiers in Bioscience, 26(3), 566611. doi: 10.2741/4908.CrossRefGoogle ScholarPubMed
Ruhe, H. G., Mason, N. S., & Schene, A. H. (2007). Mood is indirectly related to serotonin, norepinephrine and dopamine levels in humans: A meta-analysis of monoamine depletion studies. Molecular Psychiatry, 12(4), 331359. doi: 10.1038/sj.mp.4001949.CrossRefGoogle ScholarPubMed
Schlogl, M., & Holick, M. F. (2014). Vitamin D and neurocognitive function. Clinical Interventions in Aging, 9, 559568. doi: 10.2147/CIA.S51785.Google ScholarPubMed
Seedat, S., Scott, K. M., Angermeyer, M. C., Berglund, P., Bromet, E. J., Brugha, T. S., … Kessler, R. C. (2009). Cross-national associations between gender and mental disorders in the World Health Organization World Mental Health Surveys. Archives of General Psychiatry, 66(7), 785795. doi: 10.1001/archgenpsychiatry.2009.36.CrossRefGoogle ScholarPubMed
Sezgin, G., Ozturk, G., Turkal, R., & Caykara, B. (2019). Vitamin D levels of outpatients admitted to a university hospital in the Marmara region of Turkey over 3 years. Journal of Medical Biochemistry, 38(2), 181187. doi: 10.2478/jomb-2018-0027.CrossRefGoogle ScholarPubMed
Sheehan, D. V., Lecrubier, Y., Sheehan, K. H., Amorim, P., Janavs, J., Weiller, E., … Dunbar, G. C. (1998). The Mini-International Neuropsychiatric Interview (M.I.N.I.): The development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. The Journal of Clinical Psychiatry, 59(Suppl 20), 2233; quiz 34–57. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/9881538.Google ScholarPubMed
Shen, T., Qiu, M., Li, C., Zhang, J., Wu, Z., Wang, B., … Peng, D. (2014). Altered spontaneous neural activity in first-episode, unmedicated patients with major depressive disorder. Neuroreport, 25(16), 13021307. doi: 10.1097/WNR.0000000000000263.CrossRefGoogle ScholarPubMed
Shen, Y., Wei, Y., Yang, X. N., Zhang, G., Du, X., Jia, Q., … Zhang, X. Y. (2020). Psychotic symptoms in first-episode and drug naive patients with major depressive disorder: Prevalence and related clinical factors. Depression and Anxiety, 37(8), 793800. doi: 10.1002/da.23026.CrossRefGoogle ScholarPubMed
Slinin, Y., Paudel, M., Taylor, B. C., Ishani, A., Rossom, R., Yaffe, K., … Ensrud, K. E. (2012). Association between serum 25(OH) vitamin D and the risk of cognitive decline in older women. The Journals of Gerontology: Series A, Biological Sciences and Medical Sciences, 67(10), 10921098. doi: 10.1093/gerona/gls075.CrossRefGoogle ScholarPubMed
Solomon, M. B., & Herman, J. P. (2009). Sex differences in psychopathology: Of gonads, adrenals and mental illness. Physiology & Behavior, 97(2), 250258. doi: 10.1016/j.physbeh.2009.02.033.CrossRefGoogle ScholarPubMed
Song, B. M., Kim, H. C., Rhee, Y., Youm, Y., & Kim, C. O. (2016). Association between serum 25-hydroxyvitamin D concentrations and depressive symptoms in an older Korean population: A cross-sectional study. Journal of Affective Disorders, 189, 357364. doi: 10.1016/j.jad.2015.09.043.CrossRefGoogle Scholar
Thompson, E. (2015). Hamilton Rating Scale for Anxiety (HAM-A). Occupational Medicine, 65(7), 601. doi: 10.1093/occmed/kqv054.CrossRefGoogle ScholarPubMed
Toffanello, E. D., Coin, A., Perissinotto, E., Zambon, S., Sarti, S., Veronese, N., … Sergi, G. (2014a). Vitamin D deficiency predicts cognitive decline in older men and women: The Pro.V.A. Study. Neurology, 83(24), 22922298. doi: 10.1212/WNL.0000000000001080.CrossRefGoogle ScholarPubMed
Toffanello, E. D., Sergi, G., Veronese, N., Perissinotto, E., Zambon, S., Coin, A., … Manzato, E. (2014b). Serum 25-hydroxyvitamin d and the onset of late-life depressive mood in older men and women: The Pro.V.A. study. The Journals of Gerontology: Series A, Biological Sciences and Medical Sciences, 69(12), 15541561. doi: 10.1093/gerona/glu081.CrossRefGoogle ScholarPubMed
Tong, P., Bo, P., Shi, Y., Dong, L., Sun, T., Gao, X., & Yang, Y. (2021). Clinical traits of patients with major depressive disorder with comorbid borderline personality disorder based on propensity score matching. Depression and Anxiety, 38(1), 100106. doi: 10.1002/da.23122.CrossRefGoogle ScholarPubMed
Wang, J., Um, P., Dickerman, B. A., & Liu, J. (2018). Zinc, magnesium, selenium and depression: A review of the evidence, potential mechanisms and implications. Nutrients, 10(5), 584. 10.3390/nu10050584.CrossRefGoogle ScholarPubMed
Wang, L., Dai, W., Su, Y., Wang, G., Tan, Y., Jin, Z., … Si, T. (2012). Amplitude of low-frequency oscillations in first-episode, treatment-naive patients with major depressive disorder: A resting-state functional MRI study. PLoS ONE, 7(10), e48658. doi: 10.1371/journal.pone.0048658.CrossRefGoogle ScholarPubMed
Wani, A. L., Bhat, S. A., & Ara, A. (2015). Omega-3 fatty acids and the treatment of depression: A review of scientific evidence. Integrative Medicine Research, 4(3), 132141. doi: 10.1016/j.imr.2015.07.003.CrossRefGoogle ScholarPubMed
Williams, J. B. (1988). A structured interview guide for the Hamilton Depression Rating Scale. Archives of General Psychiatry, 45(8), 742747. doi:10.1001/archpsyc.1988.01800320058007.CrossRefGoogle ScholarPubMed
Wong, S. K., Chin, K. Y., & Ima-Nirwana, S. (2018). Vitamin D and depression: The evidence from an indirect clue to treatment strategy. Current Drug Targets, 19(8), 888897. doi: 10.2174/1389450118666170913161030.CrossRefGoogle ScholarPubMed
World Health Organization. (2017). Depression and other common mental disorders: Global health estimates. Geneva, World Health Organization. Retrieved from https://www.who.int/mental_health/management/depression/prevalence_global_health_estimates/en/.Google Scholar
Wortsman, J., Matsuoka, L. Y., Chen, T. C., Lu, Z., & Holick, M. F. (2000). Decreased bioavailability of vitamin D in obesity. The American Journal of Clinical Nutrition, 72(3), 690693. doi: 10.1093/ajcn/72.3.690.CrossRefGoogle ScholarPubMed
Yan, C. G., Wang, X. D., Zuo, X. N., & Zang, Y. F. (2016). DPABI: Data processing & analysis for (resting-state) brain imaging. Neuroinformatics, 14(3), 339351. doi: 10.1007/s12021-016-9299-4.CrossRefGoogle ScholarPubMed
Yan, X., Zhang, N., Cheng, S., Wang, Z., & Qin, Y. (2019). Gender differences in vitamin D status in China. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research, 25, 70947099. doi: 10.12659/MSM.916326.CrossRefGoogle ScholarPubMed
Zagni, E., Simoni, L., & Colombo, D. (2016). Sex and gender differences in central nervous system-related disorders. Neuroscience Journal, 2016, 2827090. doi: 10.1155/2016/2827090.CrossRefGoogle ScholarPubMed
Zang, Y. F., He, Y., Zhu, C. Z., Cao, Q. J., Sui, M. Q., Liang, M., … Wang, Y. F. (2007). Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI. Brain & Development, 29(2), 8391. doi: 10.1016/j.braindev.2006.07.002.Google ScholarPubMed
Zheng, Y. P., Zhao, J. P., Phillips, M., Liu, J. B., Cai, M. F., Sun, S. Q., & Huang, M. F. (1988). Validity and reliability of the Chinese Hamilton Depression Rating Scale. The British Journal of Psychiatry: The Journal of Mental Science, 152, 660664. doi: 10.1192/bjp.152.5.660.CrossRefGoogle ScholarPubMed
Zhou, F. C., Wang, Y. Y., Zheng, W., Zhang, Q., Ungvari, G. S., Ng, C. H., … Xiang, Y. T. (2017). Prospective memory deficits in patients with depression: A meta-analysis. Journal of Affective Disorders, 220, 7985. doi: 10.1016/j.jad.2017.05.042.CrossRefGoogle ScholarPubMed
Zhu, D. M., Zhang, C., Yang, Y., Zhang, Y., Zhao, W., Zhang, B., … Yu, Y. (2020). The relationship between sleep efficiency and clinical symptoms is mediated by brain function in major depressive disorder. Journal of Affective Disorders, 266, 327337. doi: 10.1016/j.jad.2020.01.155.CrossRefGoogle ScholarPubMed
Zhu, D.-M., Zhao, W., Zhang, B., Zhang, Y., Yang, Y., Zhang, C., … Yu, Y. (2019). The relationship between serum concentration of vitamin D, total intracranial volume, and severity of depressive symptoms in patients with major depressive disorder. Frontiers in Psychiatry, 10, 322. 10.3389/fpsyt.2019.00322.CrossRefGoogle ScholarPubMed
Zhuo, C., Li, G., Lin, X., Jiang, D., Xu, Y., Tian, H., … Song, X. (2019). The rise and fall of MRI studies in major depressive disorder. Translational Psychiatry, 9(1), 335. doi: 10.1038/s41398-019-0680-6.CrossRefGoogle ScholarPubMed
Zou, Q. H., Zhu, C. Z., Yang, Y., Zuo, X. N., Long, X. Y., Cao, Q. J., … Zang, Y. F. (2008). An improved approach to detection of amplitude of low-frequency fluctuation (ALFF) for resting-state fMRI: Fractional ALFF. Journal of Neuroscience Methods, 172(1), 137141. doi: 10.1016/j.jneumeth.2008.04.012.CrossRefGoogle ScholarPubMed
Supplementary material: File

Zhao et al. supplementary material

Zhao et al. supplementary material

Download Zhao et al. supplementary material(File)
File 2.2 MB