Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-27T04:35:59.317Z Has data issue: false hasContentIssue false

Brain morphometry points to emerging patterns of psychosis, depression, and anxiety vulnerability over a 2-year period in childhood

Published online by Cambridge University Press:  07 January 2022

Teresa G. Vargas*
Affiliation:
Northwestern University, Swift Hall 102, 2029 Sheridan Road, Evanston, IL 60201, USA
Vijay A. Mittal
Affiliation:
Northwestern University, Swift Hall 102, 2029 Sheridan Road, Evanston, IL 60201, USA
*
Author for correspondence: Teresa Vargas, E-mail: teresavargas@u.northwestern.edu

Abstract

Background

Gray matter morphometry studies have lent seminal insights into the etiology of mental illness. Existing research has primarily focused on adults and then, typically on a single disorder. Examining brain characteristics in late childhood, when the brain is preparing to undergo significant adolescent reorganization and various forms of serious psychopathology are just first emerging, may allow for a unique and highly important perspective of overlapping and unique pathogenesis.

Methods

A total of 8645 youth were recruited as part of the Adolescent Brain and Cognitive Development study. Magnetic resonance imaging scans were collected, and psychotic-like experiences (PLEs), depressive, and anxiety symptoms were assessed three times over a 2-year period. Cortical thickness, surface area, and subcortical volume were used to predict baseline symptomatology and symptom progression over time.

Results

Some features could possibly signal common vulnerability, predicting progression across forms of psychopathology (e.g. superior frontal and middle temporal regions). However, there was a specific predictive value for emerging PLEs (lateral occipital and precentral thickness), anxiety (parietal thickness/area and cingulate), and depression (e.g. parahippocampal and inferior temporal).

Conclusion

Findings indicate common and distinct patterns of vulnerability for varying forms of psychopathology are present during late childhood, before the adolescent reorganization, and have direct relevance for informing novel conceptual models along with early prevention and intervention efforts.

Type
Original Article
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Achenbach, T. M., Dumenci, L., & Rescorla, L. A. (2003). DSM-oriented and empirically based approaches to constructing scales from the same item pools. Journal of Clinical Child and Adolescent Psychology, 32(3), 328340. doi: 10.1207/S15374424JCCP3203_02CrossRefGoogle ScholarPubMed
Armstrong, R. A. (2014). When to use the Bonferroni correction. Ophthalmic and Physiological Optics, 34(5), 502508. doi: 10.1111/opo.12131CrossRefGoogle ScholarPubMed
Barch, D. M., Albaugh, M. D., Avenevoli, S., Chang, L., Clark, D. B., Glantz, M. D., … Yurgelun-Todd, D. (2018). Demographic, physical and mental health assessments in the adolescent brain and cognitive development study: Rationale and description. Developmental Cognitive Neuroscience, 32, 5566. doi: 10.1016/j.dcn.2017.10.010CrossRefGoogle ScholarPubMed
Bas-Hoogendam, J. M., van Steenbergen, H., Tissier, R. L., Houwing-Duistermaat, J. J., Westenberg, P. M., & van der Wee, N. J. (2018). Subcortical brain volumes, cortical thickness and cortical surface area in families genetically enriched for social anxiety disorder – A multiplex multigenerational neuroimaging study. EBioMedicine, 36, 410428. doi: 10.1016/j.ebiom.2018.08.048CrossRefGoogle ScholarPubMed
Beard, C., & Björgvinsson, T. (2013). Psychological vulnerability: An integrative approach. Journal of Psychotherapy Integration, 23(3), 281283. doi: 10.1037/a0032361CrossRefGoogle Scholar
Bora, E., Fornito, A., Pantelis, C., & Yücel, M. (2012). Gray matter abnormalities in major depressive disorder: A meta-analysis of voxel based morphometry studies. Journal of Affective Disorders, 138(1–2), 918. doi: 10.1016/j.jad.2011.03.049CrossRefGoogle ScholarPubMed
Bos, M. G., Peters, S., van de Kamp, F. C., Crone, E. A., & Tamnes, C. K. (2018). Emerging depression in adolescence coincides with accelerated frontal cortical thinning. Journal of Child Psychology and Psychiatry, 59(9), 9941002. doi: 10.1111/jcpp.12895CrossRefGoogle ScholarPubMed
Cabin, R. J., & Mitchell, R. J. (2000). To Bonferroni or not to Bonferroni: When and how are the questions. Bulletin of the Ecological Society of America, 81(3), 246248. doi: 10.2307/20168454Google Scholar
Callicott, J. H., Mattay, V. S., Verchinski, B. A., Marenco, S., Egan, M. F., & Weinberger, D. R. (2003). Complexity of prefrontal cortical dysfunction in schizophrenia: More than up or down. American Journal of Psychiatry, 160(12), 22092215. doi: 10.1176/appi.ajp.160.12.2209CrossRefGoogle ScholarPubMed
Canu, E., Kostić, M., Agosta, F., Munjiza, A., Ferraro, P. M., Pesic, D., … Filippi, M. (2015). Brain structural abnormalities in patients with major depression with or without generalized anxiety disorder comorbidity. Journal of Neurology, 262(5), 12551265. doi: 10.1007/s00415-015-7701-zCrossRefGoogle ScholarPubMed
Carnevali, L., Mancini, M., Koenig, J., Makovac, E., Watson, D. R., Meeten, F., … Ottaviani, C. (2019). Cortical morphometric predictors of autonomic dysfunction in generalized anxiety disorder. Autonomic Neuroscience, 217, 4148. doi: 10.1016/j.autneu.2019.01.001CrossRefGoogle ScholarPubMed
Casey, B., Cannonier, T., Conley, M. I., Cohen, A. O., Barch, D. M., Heitzeg, M. M., … Garavan, H. (2018). The adolescent brain cognitive development (ABCD) study: Imaging acquisition across 21 sites. Developmental Cognitive Neuroscience, 32, 4354. doi: 10.1016/j.dcn.2018.03.001CrossRefGoogle ScholarPubMed
Casey, B., Oliveri, M. E., & Insel, T. (2014). A neurodevelopmental perspective on the research domain criteria (RDoC) framework. Biological Psychiatry, 76(5), 350353. doi: 10.1016/j.biopsych.2014.01.006CrossRefGoogle ScholarPubMed
Castagna, P. J., Roye, S., Calamia, M., Owens-French, J., Davis, T. E., & Greening, S. G. (2018). Parsing the neural correlates of anxious apprehension and anxious arousal in the grey-matter of healthy youth. Brain Imaging and Behavior, 12(4), 10841098. doi: 10.1007/s11682-017-9772-1CrossRefGoogle ScholarPubMed
Chiapponi, C., Piras, F., Fagioli, S., Piras, F., Caltagirone, C., & Spalletta, G. (2013). Age-related brain trajectories in schizophrenia: A systematic review of structural MRI studies. Psychiatry Research: Neuroimaging, 214(2), 8393. doi: 10.1016/j.pscychresns.2013.05.003CrossRefGoogle ScholarPubMed
Choudhury, M., Steines, M., Nagels, A., Riedl, L., Kircher, T., & Straube, B. (2021). Neural basis of speech-gesture mismatch detection in schizophrenia spectrum disorders. Schizophrenia Bulletin, 47(6), 17611771. doi: 10.1093/schbul/sbab059CrossRefGoogle ScholarPubMed
Cicchetti, D., & Rogosch, F. A. (1996). Equifinality and multifinality in developmental psychopathology. Development and Psychopathology, 8(4), 597600. doi: 10.1017/S0954579400007318CrossRefGoogle Scholar
Cohen, J. R., Andrews, A. R., Davis, M. M., & Rudolph, K. D. (2018). Anxiety and depression during childhood and adolescence: Testing theoretical models of continuity and discontinuity. Journal of Abnormal Child Psychology, 46(6), 12951308. doi: 10.1007/s10802-017-0370-xCrossRefGoogle ScholarPubMed
Cone, N. E., Burman, D. D., Bitan, T., Bolger, D. J., & Booth, J. R. (2008). Developmental changes in brain regions involved in phonological and orthographic processing during spoken language processing. Neuroimage, 41(2), 623635. doi: 10.1016/j.neuroimage.2008.02.055CrossRefGoogle ScholarPubMed
Conway, C. C., Zinbarg, R. E., Mineka, S., & Craske, M. G. (2017). Core dimensions of anxiety and depression change independently during adolescence. Journal of Abnormal Psychology, 126(2), 160172. doi: 10.1037/abn0000222CrossRefGoogle ScholarPubMed
Costello, E. J., Mustillo, S., Erkanli, A., Keeler, G., & Angold, A. (2003). Prevalence and development of psychiatric disorders in childhood and adolescence. Archives of General Psychiatry, 60(8), 837844. doi: 10.1001/archpsyc.60.8.837CrossRefGoogle ScholarPubMed
Couvy-Duchesne, B., Strike, L. T., de Zubicaray, G. I., McMahon, K. L., Thompson, P. M., Hickie, I. B., … Wright, M. J. (2018). Lingual gyrus surface area is associated with anxiety-depression severity in young adults: A genetic clustering approach. Eneuro, 5(1), 114. doi: 10.1523/ENEURO.0153-17.2017.CrossRefGoogle ScholarPubMed
Damme, K. S., Park, J. S., Vargas, T., Walther, S., Shankman, S. A., & Mittal, V. A. (2021). Motor abnormalities, depression risk, and clinical course in adolescence. Biological Psychiatry Global Open Science. doi: 10.1016/j.bpsgos.2021.06.011Google ScholarPubMed
Del Re, E. C., Stone, W. S., Bouix, S., Seitz, J., Zeng, V., Guliano, A., … Lyall, A. (2021). Baseline cortical thickness reductions in clinical high risk for psychosis: Brain regions associated with conversion to psychosis versus non-conversion as assessed at one-year follow-up in the shanghai-at-risk-for-psychosis (SHARP) study. Schizophrenia Bulletin, 47(2), 562574. doi: 10.1093/schbul/sbaa127CrossRefGoogle ScholarPubMed
Ducharme, S., Albaugh, M. D., Hudziak, J. J., Botteron, K. N., Nguyen, T.-V., Truong, C., … Byars, A. W. (2014). Anxious/depressed symptoms are linked to right ventromedial prefrontal cortical thickness maturation in healthy children and young adults. Cerebral Cortex, 24(11), 29412950. doi: 10.1093/cercor/bht151CrossRefGoogle ScholarPubMed
Durham, E. L., Jeong, H. J., Moore, T. M., Dupont, R. M., Cardenas-Iniguez, C., Cui, Z., … Kaczkurkin, A. N. (2021). Association of gray matter volumes with general and specific dimensions of psychopathology in children. Neuropsychopharmacology, 46(7), 17. doi: 10.1038/s41386-020-00952-wCrossRefGoogle ScholarPubMed
Fiedler, K., Kutzner, F., & Krueger, J. I. (2012). The long way from α-error control to validity proper: Problems with a short-sighted false-positive debate. Perspectives on Psychological Science, 7(6), 661669. doi: 10.1177/1745691612462587CrossRefGoogle Scholar
Fischl, B., Salat, D. H., Busa, E., Albert, M., Dieterich, M., Haselgrove, C., … Klaveness, S. (2002). Whole brain segmentation: Automated labeling of neuroanatomical structures in the human brain. Neuron, 33(3), 341355. doi: 10.1016/s0896-6273(02)00569-xCrossRefGoogle ScholarPubMed
Fischl, B., Sereno, M. I., Tootell, R. B., & Dale, A. M. (1999). High-resolution intersubject averaging and a coordinate system for the cortical surface. Human Brain Mapping, 8(4), 272284. doi: 10.1002/(sici)1097-0193(1999)8:4 < 272::aid-hbm10>3.0.co;2-43.0.CO;2-4>CrossRefGoogle Scholar
Fonville, L., Drakesmith, M., Zammit, S., Lewis, G., Jones, D. K., & David, A. S. (2019). MRI indices of cortical development in young people with psychotic experiences: Influence of genetic risk and persistence of symptoms. Schizophrenia Bulletin, 45(1), 169179. doi: 10.1093/schbul/sbx195CrossRefGoogle ScholarPubMed
Forbes, M., Stefler, D., Velakoulis, D., Stuckey, S., Trudel, J.-F., Eyre, H., … Kisely, S. (2019). The clinical utility of structural neuroimaging in first-episode psychosis: A systematic review. Australian & New Zealand Journal of Psychiatry, 53(11), 10931104. doi: 10.1177/0004867419848035CrossRefGoogle ScholarPubMed
Fox J, W. S. (2019). An R companion to applied regression (version 3). Thousand Oaks, CA: Sage. Retrieved from https://socialsciences.mcmaster.ca/jfox/Books/Companion/.Google Scholar
Fraguas, D., Díaz-Caneja, C. M., Pina-Camacho, L., Janssen, J., & Arango, C. (2016). Progressive brain changes in children and adolescents with early-onset psychosis: A meta-analysis of longitudinal MRI studies. Schizophrenia Research, 173(3), 132139. doi: 10.1016/j.schres.2014.12.022CrossRefGoogle ScholarPubMed
Freitas-Ferrari, M. C., Hallak, J. E., Trzesniak, C., Santos Filho, A., Machado-de-Sousa, J. P., Chagas, M. H. N., … Crippa, J. A. S. (2010). Neuroimaging in social anxiety disorder: A systematic review of the literature. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 34(4), 565580. doi: 10.1016/j.pnpbp.2010.02.028CrossRefGoogle ScholarPubMed
Frick, A., Howner, K., Fischer, H., Eskildsen, S. F., Kristiansson, M., & Furmark, T. (2013). Cortical thickness alterations in social anxiety disorder. Neuroscience Letters, 536, 5255. doi: 10.1016/j.neulet.2012.12.060CrossRefGoogle ScholarPubMed
Frodl, T., Janowitz, D., Schmaal, L., Tozzi, L., Dobrowolny, H., Stein, D. J., … Jahanshad, N. (2017). Childhood adversity impacts on brain subcortical structures relevant to depression. Journal of Psychiatric Research, 86, 5865. doi: 10.1016/j.jpsychires.2016.11.010CrossRefGoogle ScholarPubMed
Garcia, K., Kroenke, C., & Bayly, P. (2018). Mechanics of cortical folding: Stress, growth and stability. Philosophical Transactions of the Royal Society B: Biological Sciences, 373(1759), 20170321. doi: 10.1098/rstb.2017.0321CrossRefGoogle ScholarPubMed
Gogtay, N., Giedd, J. N., Lusk, L., Hayashi, K. M., Greenstein, D., Vaituzis, A. C., … Toga, A. W. (2004). Dynamic mapping of human cortical development during childhood through early adulthood. Proceedings of the National Academy of Sciences, 101(21), 81748179. doi: 10.1073/pnas.0402680101CrossRefGoogle ScholarPubMed
Goldstein, B. L., & Klein, D. N. (2014). A review of selected candidate endophenotypes for depression. Clinical Psychology Review, 34(5), 417427. doi: 10.1016/j.cpr.2014.06.003CrossRefGoogle ScholarPubMed
Hagler, D. J. Jr, Hatton, S., Cornejo, M. D., Makowski, C., Fair, D. A., Dick, A. S., … Harms, M. P. (2019). Image processing and analysis methods for the adolescent brain cognitive development study. Neuroimage, 202, 116091. doi: 10.1016/j.neuroimage.2019.116091CrossRefGoogle ScholarPubMed
Heeringa, S. G., & Berglund, P. A. (2020). A guide for population-based analysis of the adolescent brain cognitive development (ABCD) study baseline data. BioRxiv, 202, 116091. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6981278/pdf/nihms-1543097.pdf.Google Scholar
Hubachek, S., Botdorf, M., Riggins, T., Leong, H.-C., Klein, D. N., & Dougherty, L. R. (2021). Hippocampal subregion volume in high-risk offspring is associated with increases in depressive symptoms across the transition to adolescence. Journal of Affective Disorders, 281, 358366. doi: 10.1016/j.jad.2020.12.017CrossRefGoogle ScholarPubMed
Hubachek, S. Q. (2021). Hippocampal subregion volume in high-risk offspring predicts increases in depressive symptoms across the transition to adolescence. Journal of Affective Disorders, 358366. https://www.proquest.com/docview/2496999030?pqorigsite=gscholar&fromopenview=trueCrossRefGoogle Scholar
Jaworska, N., Yücel, K., Courtright, A., MacMaster, F. P., Sembo, M., & MacQueen, G. (2016). Subgenual anterior cingulate cortex and hippocampal volumes in depressed youth: The role of comorbidity and age. Journal of Affective Disorders, 190, 726732. doi: 10.1016/j.jad.2015.10.064CrossRefGoogle ScholarPubMed
Jenkins, L. M., Chiang, J. J., Vause, K., Hoffer, L., Alpert, K., Parrish, T. B., … Wang, L. (2020). Outward subcortical curvature associated with sub-clinical depression symptoms in adolescents. NeuroImage: Clinical, 25, 102187. doi: 10.1016/j.nicl.2020.102187CrossRefGoogle ScholarPubMed
Jeon, T., Mishra, V., Ouyang, M., Chen, M., & Huang, H. (2015). Synchronous changes of cortical thickness and corresponding white matter microstructure during brain development accessed by diffusion MRI tractography from parcellated cortex. Frontiers in Neuroanatomy, 9, 158. doi: 10.3389/fnana.2015.00158CrossRefGoogle ScholarPubMed
Kaczkurkin, A. N., Park, S. S., Sotiras, A., Moore, T. M., Calkins, M. E., Cieslak, M., … Cui, Z. (2019). Evidence for dissociable linkage of dimensions of psychopathology to brain structure in youths. American Journal of Psychiatry, 176(12), 10001009. doi: 10.1176/appi.ajp.2019.18070835CrossRefGoogle ScholarPubMed
Karcher, N. R., Barch, D. M., Avenevoli, S., Savill, M., Huber, R. S., Simon, T. J., … Loewy, R. L. (2018). Assessment of the prodromal questionnaire – brief child version for measurement of self-reported psychotic like experiences in childhood. JAMA Psychiatry, 75(8), 853861. doi: 10.1001/jamapsychiatry.2018.1334CrossRefGoogle Scholar
Kelleher, I., & Cannon, M. (2011). Psychotic-like experiences in the general population: Characterizing a high-risk group for psychosis. Psychological Medicine, 41(1), 16. doi: 10.1017/S0033291710001005CrossRefGoogle Scholar
Keyes, K. M., Gary, D., O'Malley, P. M., Hamilton, A., & Schulenberg, J. (2019). Recent increases in depressive symptoms among US adolescents: Trends from 1991 to 2018. Social Psychiatry and Psychiatric Epidemiology, 54(8), 987996. doi: 10.1007/s00127-019-01697-8CrossRefGoogle ScholarPubMed
Kline, E., Thompson, E., Bussell, K., Pitts, S. C., Reeves, G., & Schiffman, J. (2014). Psychosis-like experiences and distress among adolescents using mental health services. Schizophrenia Research, 152(2–3), 498502. doi: 10.1016/j.schres.2013.12.012CrossRefGoogle ScholarPubMed
Kotov, R., Krueger, R. F., Watson, D., Cicero, D. C., Conway, C. C., DeYoung, C. G., … Latzman, R. D. (2021). The hierarchical taxonomy of psychopathology (HiTOP): A quantitative nosology based on consensus of evidence. Annual Review of Clinical Psychology, 17, 83108. doi: 10.1146/annurev-clinpsy-081219-093304CrossRefGoogle ScholarPubMed
Kribakaran, S., Danese, A., Bromis, K., Kempton, M., & Gee, D. (2020). Meta-analysis of structural MRI studies in pediatric PTSD and comparison with related conditions. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 5(1), 2334. doi: 10.1016/j.bpsc.2019.08.006Google ScholarPubMed
Krueger, R. F., & Markon, K. E. (2011). A dimensional-spectrum model of psychopathology: Progress and opportunities. Archives of General Psychiatry, 68(1), 1011. doi: 10.1001/archgenpsychiatry.2010.188CrossRefGoogle ScholarPubMed
Laurens, K. R., Hodgins, S., Maughan, B., Murray, R. M., Rutter, M. L., & Taylor, E. A. (2007). Community screening for psychotic-like experiences and other putative antecedents of schizophrenia in children aged 9–12 years. Schizophrenia Research, 90(1–3), 130146. doi: 10.1016/j.schres.2006.11.006CrossRefGoogle ScholarPubMed
Lyall, A. E., Shi, F., Geng, X., Woolson, S., Li, G., Wang, L., … Gilmore, J. H. (2015). Dynamic development of regional cortical thickness and surface area in early childhood. Cerebral Cortex, 25(8), 22042212. doi: 10.1093/cercor/bhu027CrossRefGoogle ScholarPubMed
Maglanoc, L. A., Kaufmann, T., Jonassen, R., Hilland, E., Beck, D., Landrø, N. I., & Westlye, L. T. (2020). Multimodal fusion of structural and functional brain imaging in depression using linked independent component analysis. Human Brain Mapping, 41(1), 241255. doi: 10.1002/hbm.24802CrossRefGoogle ScholarPubMed
Makovac, E., Meeten, F., Watson, D. R., Garfinkel, S. N., Critchley, H. D., & Ottaviani, C. (2016). Neurostructural abnormalities associated with axes of emotion dysregulation in generalized anxiety. NeuroImage: Clinical, 10, 172181. doi: 10.1016/j.nicl.2015.11.022CrossRefGoogle ScholarPubMed
Merz, E. C., He, X., & Noble, K. G. (2018). Anxiety, depression, impulsivity, and brain structure in children and adolescents. NeuroImage: Clinical, 20, 243251. doi: 10.1016/j.nicl.2018.07.020CrossRefGoogle ScholarPubMed
Molent, C., Maggioni, E., Cecchetto, F., Garzitto, M., Piccin, S., Bonivento, C., … Perna, G. (2018). Reduced cortical thickness and increased gyrification in generalized anxiety disorder: A 3 T MRI study. Psychological Medicine, 48(12), 20012010. doi: 10.1017/S003329171700352XCrossRefGoogle ScholarPubMed
Mowinckel, A. M., & Vidal-Piñeiro, D. (2020). Visualization of brain statistics with R packages ggseg and ggseg3d. Advances in Methods and Practices in Psychological Science, 3(4), 466483. doi: 10.1177/2515245920928009CrossRefGoogle Scholar
Muller, H. (1985). Prefrontal cortex dysfunction as a common factor in psychosis. Acta Psychiatrica Scandinavica, 71(5), 431440. doi: 10.1111/j.1600-0447.1985.tb05055.xCrossRefGoogle ScholarPubMed
Newman, E., Thompson, W. K., Bartsch, H., Hagler, D. J., Chen, C.-H., Brown, T. T., … Libiger, O. (2016). Anxiety is related to indices of cortical maturation in typically developing children and adolescents. Brain Structure and Function, 221(6), 30133025. doi: 10.1007/s00429-015-1085-9CrossRefGoogle ScholarPubMed
Norbom, L. B., Ferschmann, L., Parker, N., Agartz, I., Andreassen, O. A., Paus, T., … Tamnes, C. K. (2021). New insights into the dynamic development of the cerebral cortex in childhood and adolescence: Integrating macro-and microstructural MRI findings. Progress in Neurobiology, 204, 102109. doi: 10.1016/j.pneurobio.2021.102109CrossRefGoogle ScholarPubMed
Pagliaccio, D., Alqueza, K. L., Marsh, R., & Auerbach, R. P. (2020). Brain volume abnormalities in youth at high risk for depression: Adolescent brain and cognitive development study. Journal of the American Academy of Child & Adolescent Psychiatry, 59(10), 11781188. doi: 10.1016/j.jaac.2019.09.032CrossRefGoogle ScholarPubMed
Papanastasiou, E., Mouchlianitis, E., Joyce, D. W., McGuire, P., Boussebaa, C., Banaschewski, T., … Desrivières, S. (2020). Examination of the neural basis of psychotic-like experiences in adolescence during processing of emotional faces. Scientific Reports, 10(1), 111. doi: 10.1038/s41598-020-62026-7CrossRefGoogle ScholarPubMed
Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., Heisterkamp, S., Van Willigen, B., & Maintainer, R. (2021). nlme: Linear and nonlinear mixed effects models. R package version 3.1-153. Retrieved from https://CRAN.R-project.org/package=nlme.Google Scholar
Schmaal, L., Hibar, D., Sämann, P., Hall, G., Baune, B., Jahanshad, N., … Ikram, M. (2017). Cortical abnormalities in adults and adolescents with major depression based on brain scans from 20 cohorts worldwide in the ENIGMA major depressive disorder working group. Molecular Psychiatry, 22(6), 900909. doi: 10.1038/mp.2016.60CrossRefGoogle ScholarPubMed
Shepherd, A. M., Laurens, K. R., Matheson, S. L., Carr, V. J., & Green, M. J. (2012). Systematic meta-review and quality assessment of the structural brain alterations in schizophrenia. Neuroscience & Biobehavioral Reviews, 36(4), 13421356. doi: 10.1016/j.neubiorev.2011.12.015CrossRefGoogle ScholarPubMed
Strawn, J. R., Wegman, C. J., Dominick, K. C., Swartz, M. S., Wehry, A. M., Patino, L. R., … DelBello, M. P. (2014). Cortical surface anatomy in pediatric patients with generalized anxiety disorder. Journal of Anxiety Disorders, 28(7), 717723. doi: 10.1016/j.janxdis.2014.07.012CrossRefGoogle ScholarPubMed
Strawn, J. R., Wehry, A. M., Chu, W. J., Adler, C. M., Eliassen, J. C., Cerullo, M. A., … DelBello, M. P. (2013). Neuroanatomic abnormalities in adolescents with generalized anxiety disorder: A voxel-based morphometry study. Depression and Anxiety, 30(9), 842848. doi: 10.1002/da.22089CrossRefGoogle ScholarPubMed
Sugranyes, G., de la Serna, E., Ilzarbe, D., Pariente, J. C., Borras, R., Romero, S., … Bernardo, M. (2020). Brain structural trajectories in youth at familial risk for schizophrenia or bipolar disorder according to development of psychosis spectrum symptoms. Journal of Child Psychology and Psychiatry, 62(6), 780789. doi: 10.1111/jcpp.13321CrossRefGoogle ScholarPubMed
Suh, J. S., Schneider, M. A., Minuzzi, L., MacQueen, G. M., Strother, S. C., Kennedy, S. H., & Frey, B. N. (2019). Cortical thickness in major depressive disorder: A systematic review and meta-analysis. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 88, 287302. doi: 10.1016/j.pnpbp.2018.08.008CrossRefGoogle ScholarPubMed
Syal, S., Hattingh, C. J., Fouché, J.-P., Spottiswoode, B., Carey, P. D., Lochner, C., & Stein, D. J. (2012). Grey matter abnormalities in social anxiety disorder: A pilot study. Metabolic Brain Disease, 27(3), 299309. doi: 10.1007/s11011-012-9299-5CrossRefGoogle ScholarPubMed
Tamnes, C. K., Herting, M. M., Goddings, A.-L., Meuwese, R., Blakemore, S.-J., Dahl, R. E., … Crone, E. A. (2017). Development of the cerebral cortex across adolescence: A multisample study of inter-related longitudinal changes in cortical volume, surface area, and thickness. Journal of Neuroscience, 37(12), 34023412. doi: 10.1523/JNEUROSCI.3302-16.2017CrossRefGoogle ScholarPubMed
Taylor, B. K., Eastman, J. A., Frenzel, M. R., Embury, C. M., Wang, Y.-P., Stephen, J. M., … Wilson, T. W. (2020). Subclinical anxiety and posttraumatic stress influence cortical thinning during adolescence. Journal of the American Academy of Child & Adolescent Psychiatry, 60(10), 12881299. doi: 10.1016/j.jaac.2020.11.020CrossRefGoogle ScholarPubMed
Team, R. (2018). RStudio: integrated development for R. RStudio, PBC, Boston, MA. Retrieved from http://www.rstudio.com/.Google Scholar
Vieira, S., Gong, Q.-Y., Pinaya, W. H., Scarpazza, C., Tognin, S., Crespo-Facorro, B., … Scheepers, F. E. (2020). Using machine learning and structural neuroimaging to detect first episode psychosis: Reconsidering the evidence. Schizophrenia Bulletin, 46(1), 1726. doi: 10.1093/schbul/sby189CrossRefGoogle ScholarPubMed
Wadsworth, M. E., Hudziak, J. J., Heath, A. C., & Achenbach, T. M. (2001). Latent class analysis of child behavior checklist anxiety/depression in children and adolescents. Journal of the American Academy of Child & Adolescent Psychiatry, 40(1), 106114. doi: 10.1097/00004583-200101000-00023CrossRefGoogle ScholarPubMed
Walther, S., Mittal, V. A., Stegmayer, K., & Bohlhalter, S. (2020). Gesture deficits and apraxia in schizophrenia. Cortex, 133, 6575. doi: 10.1016/j.cortex.2020.09.017CrossRefGoogle ScholarPubMed
Wehry, A. M., McNamara, R. K., Adler, C. M., Eliassen, J. C., Croarkin, P., Cerullo, M. A., … Strawn, J. R. (2015). Neurostructural impact of co-occurring anxiety in pediatric patients with major depressive disorder: A voxel-based morphometry study. Journal of Affective Disorders, 171, 5459. doi: 10.1016/j.jad.2014.09.004CrossRefGoogle ScholarPubMed
Wierenga, L. M., Langen, M., Oranje, B., & Durston, S. (2014). Unique developmental trajectories of cortical thickness and surface area. Neuroimage, 87, 120126. doi: 10.1016/j.neuroimage.2013.11.010CrossRefGoogle ScholarPubMed
Wise, T., Radua, J., Via, E., Cardoner, N., Abe, O., Adams, T., … Périco, C. D. A. M. (2017). Common and distinct patterns of grey-matter volume alteration in major depression and bipolar disorder: Evidence from voxel-based meta-analysis. Molecular Psychiatry, 22(10), 14551463. doi: 10.1038/mp.2016.72CrossRefGoogle ScholarPubMed
Zhang, Z. (2016). Multiple imputation with multivariate imputation by chained equation (MICE) package. Annals of Translational Medicine, 4(2), 30. doi: 10.3978/j.issn.2305-5839.2015.12.63Google ScholarPubMed
Zhao, Y., Chen, L., Zhang, W., Xiao, Y., Shah, C., Zhu, H., … Jia, Z. (2017). Gray matter abnormalities in non-comorbid medication-naive patients with major depressive disorder or social anxiety disorder. EBioMedicine, 21, 228235. doi: 10.1016/j.ebiom.2017.06.013CrossRefGoogle ScholarPubMed
Ziermans, T. B., Schothorst, P. F., Schnack, H. G., Koolschijn, P. C. M., Kahn, R. S., van Engeland, H., & Durston, S. (2012). Progressive structural brain changes during development of psychosis. Schizophrenia Bulletin, 38(3), 519530. doi: 10.1093/schbul/sbq113CrossRefGoogle ScholarPubMed
Supplementary material: File

Vargas and Mittal supplementary material

Vargas and Mittal supplementary material

Download Vargas and Mittal supplementary material(File)
File 174.5 KB