Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-15T15:32:58.838Z Has data issue: false hasContentIssue false

Cerebral blood flow changes during retrieval of traumatic memories before and after psychotherapy: a SPECT study

Published online by Cambridge University Press:  09 February 2007

JULIO F. P. PERES*
Affiliation:
Neuroscience and Behavior, Institute of Psychology, Universidade de São Paulo, Brazil Instituto Nacional de Terapia Reestruturativa Vivencial Peres, São Paulo, Brazil
ANDREW B. NEWBERG
Affiliation:
Department of Nuclear Medicine, Hospital of University of Pennsylvania, PA, USA
JULIANE P. MERCANTE
Affiliation:
Institute of Psychiatry, School of Medicine, Universidade de São Paulo, Brazil
MANOEL SIMÃO
Affiliation:
Neuroscience and Behavior, Institute of Psychology, Universidade de São Paulo, Brazil Instituto Nacional de Terapia Reestruturativa Vivencial Peres, São Paulo, Brazil
VIVIAN E. ALBUQUERQUE
Affiliation:
Instituto Nacional de Terapia Reestruturativa Vivencial Peres, São Paulo, Brazil
MARIA J. P. PERES
Affiliation:
Instituto Nacional de Terapia Reestruturativa Vivencial Peres, São Paulo, Brazil
ANTONIA G. NASELLO
Affiliation:
Neuroscience and Behavior, Institute of Psychology, Universidade de São Paulo, Brazil Department of Physiological Science, Medical School, Santa Casa de Sao Paulo, Brazil
*
*Address for correspondence: Dr Julio F. P. Peres, Rua Maestro Cardim 887, São Paulo, SP 01323-001, Brazil. (Email: julioperes@yahoo.com)

Abstract

Background

Traumatic memory is a key symptom in psychological trauma victims and may remain vivid for several years. Psychotherapy has shown that neither the psychopathological signs of trauma nor the expression of traumatic memories are static over time. However, few studies have investigated the neural substrates of psychotherapy-related symptom changes.

Method

We studied 16 subthreshold post-traumatic stress disorder (PTSD) subjects by using a script-driven symptom provocation paradigm adapted for single photon emission computed tomography (SPECT) that was read aloud during traumatic memory retrieval both before and after exposure-based and cognitive restructuring therapy. Their neural activity levels were compared with a control group comprising 11 waiting-list subthreshold PTSD patients, who were age- and profile-matched with the psychotherapy group.

Results

Significantly higher activity was observed in the parietal lobes, left hippocampus, thalamus and left prefrontal cortex during memory retrieval after psychotherapy. Positive correlations were found between activity changes in the left prefrontal cortex and left thalamus, and also between the left prefrontal cortex and left parietal lobe.

Conclusions

Neural mechanisms involved in subthreshold PTSD may share neural similarities with those underlying the fragmented and non-verbal nature of traumatic memories in full PTSD. Moreover, psychotherapy may influence the development of a narrative pattern overlaying the declarative memory neural substrates.

Type
Original Article
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

APA (1994). Diagnostic and Statistical Manual of Mental Disorders (4th edn). American Psychiatric Association: Washington, DC.Google Scholar
Beck, A. T., Epstein, N. & Brown, G. (1988). An inventory for measuring clinical anxiety: psychometric properties. Journal of Consulting and Clinical Psychology 56, 893897.Google Scholar
Beck, A. T., Ward, C. H., Mendelson, M., Mock, J. E. & Erbaugh, J. K. (1961). An inventory for measuring depression. Archives of General Psychiatry 4, 561571.CrossRefGoogle ScholarPubMed
Blake, D., Weathers, F., Nagy, D., Kaloupek, G., Klauminzer, D., Charney, D. & Keane, T. (1990). Clinician-Administered PTSD Scale (CAPS). National Center for Post-Traumatic Stress Disorder, Behavioral Science Division, Boston VA: Boston, MA.Google Scholar
Blank, A. S. (1993). The longitudinal course of posttraumatic stress disorder. In Posttraumatic Stress Disorder: DSM-IV and Beyond (ed.Davidson, J. R. T. and Foa, E. B.), pp. 322. American Psychiatric Press: Washington, DC.Google Scholar
Bremner, J. D. (2003). Functional neuroanatomical correlates of traumatic stress revisited 7 years later, this time with data. Psychopharmacology Bulletin 37, 627.Google ScholarPubMed
Bremner, J. D., Narayan, M., Staib, L. H., Southwick, S. M., McGlashan, T. & Charney, D. S. (1999). Neural correlates of memories of childhood sexual abuse in women with and without posttraumatic stress disorder. American Journal of Psychiatry 156, 17871795.CrossRefGoogle ScholarPubMed
Breslau, N., Davis, G. C., Andreski, P. & Peterson, E. (1991). Traumatic events and posttraumatic stress disorder in an urban population of young adults. Archives of General Psychiatry 48, 216222.Google Scholar
Brewin, C. R. (2001). A cognitive neuroscience account of posttraumatic stress disorder and its treatment. Behaviour Research and Therapy 39, 373393.CrossRefGoogle ScholarPubMed
Brewin, C. R., Dalgleish, T. & Joseph, S. (1996). A dual representation theory of posttraumatic stress disorder. Psychological Review 103, 670686.CrossRefGoogle ScholarPubMed
Brewin, C. R. & Holmes, E. A. (2003). Psychological theories of posttraumatic stress disorder. Clinical Psychology Review 23, 339376.CrossRefGoogle ScholarPubMed
Carlier, I. V. & Gersons, B. P. (1995). Partial posttraumatic stress disorder (PTSD): the issue of psychological scars and the occurrence of PTSD symptoms. Journal of Nervous and Mental Disease 183, 107109.CrossRefGoogle ScholarPubMed
First, M. B., Spitzer, R. L., Gibbon, M. & Williams, J. B. W. (1995). Structured Clinical Interview for DSM-IV. New York State Psychiatric Institute, Biometrics Research Department: New York.Google Scholar
Foa, E. B., Keane, T. M. & Friedman, M. J. (2000). Effective Treatments for PTSD: Practice Guidelines from the International Society for Traumatic Stress Studies. Guilford Press: New York.Google Scholar
Gilboa, A., Shalev, A. Y., Laor, L., Lester, H., Louzoun, Y., Chisin, R. & Bonne, O. (2004). Functional connectivity of the prefrontal cortex and the amygdala in posttraumatic stress disorder. Biological Psychiatry 55, 263272.Google Scholar
Hopper, J. W. & van der Kolk, B. A. (2001). Retrieving, assessing and classifying traumatic memories: a preliminary report on three case studies of a new standardized method. Journal of Aggression, Maltreatment, and Trauma 4, 3371.CrossRefGoogle Scholar
Hull, A. M. (2002). Neuroimaging findings in post-traumatic stress disorder. Systematic review. British Journal of Psychiatry 181, 102110.Google ScholarPubMed
Kessler, R. C., Sonnega, A., Bromet, E., Hughes, M. & Nelson, C. B. (1995). Posttraumatic stress disorder in the National Comorbidity Survey. Archives of General Psychiatry 52, 10481060.CrossRefGoogle ScholarPubMed
Krystal, J. H., Bennett, A. L., Bremner, J. D., Southwick, S. M. & Charney, D. S. (1995). Toward a cognitive neuroscience of dissociation and altered memory functions in posttraumatic stress disorder. In Neurobiological and Clinical Consequences of Stress: From Normal Adaptions to PTSD (ed.Friedman, M. J., Charney, D. S. and Deutsch, A. Y.), pp. 239268. Raven Press: New York.Google Scholar
Lanius, R. A., Williamson, P. C., Densmore, M., Boksman, K., Gupta, M. A., Neufeld, R. W., Gati, J. S. & Menon, R. S. (2001). Neural correlates of traumatic memories in posttraumatic stress disorder: a functional MRI investigation. American Journal of Psychiatry 158, 19201922.CrossRefGoogle ScholarPubMed
Lanius, R. A., Williamson, P. C., Densmore, M., Boksman, K., Neufeld, R. W., Gati, J. S. & Menon, R. S. (2004). The nature of traumatic memories: a 4-T fMRI functional connectivity analysis. American Journal of Psychiatry 161, 3644.Google Scholar
Levin, P., Lazrove, S. & van der Kolk, B. (1999). What psychological testing and neuroimaging tell us about the treatment of posttraumatic stress disorder by eye movement desensitization and reprocessing. Journal of Anxiety Disorders 13, 159172.CrossRefGoogle ScholarPubMed
Liberzon, I., Taylor, S. F., Amdur, T. D., Chamberlain, K. R., Minoshima, S., Koeppe, R. A. & Fig, L. M. (1999). Brain activation in PTSD in response to trauma-related stimuli. Biological Psychiatry 45, 817826.CrossRefGoogle ScholarPubMed
Liberzon, I., Taylor, S. F., Fig, L. M. & Koeppe, R. A. (1996–1997). Alteration of corticothalamic perfusion ratios during a PTSD flashback. Depression and Anxiety 4, 146150.3.0.CO;2-E>CrossRefGoogle ScholarPubMed
Marks, I., Lovell, K., Noshirvani, H., Livanou, M. & Thrasher, S. (1998). Treatment of posttraumatic stress disorder by exposure and/or cognitive restructuring: a controlled study. Archives of General Psychiatry 55, 317325.CrossRefGoogle ScholarPubMed
Masdeu, J., Brass, L., Holman, L. & Krushner, M. (1994). Brain single-photon emission computed tomography. Neurology 44, 19701977.Google Scholar
Nutt, D. J. & Malizia, A. L. (2004). Structural and functional brain changes in posttraumatic stress disorder. Journal of Clinical Psychiatry 65 (Suppl. 1), 1117.Google ScholarPubMed
Paquette, V., Levesque, J., Mensour, B., Leroux, J. M., Beaudoin, G., Bourgouin, P. & Beauregard, M. (2003). ‘Change the mind and you change the brain’: effects of cognitive-behavioral therapy on the neural correlates of spider phobia. NeuroImage 18, 401409.Google Scholar
Peres, J. F. P., Mercante, J. P. P. & Nasello, A. G. (2005). Psychological dynamics affecting traumatic memories: implications in psychotherapy. Psychology and Psychotherapy: Theory, Research and Practice 78, 431447.CrossRefGoogle ScholarPubMed
Peres, J. F. P. & Nasello, A. G. (2005). Posttraumatic stress disorder neuroimaging findings and their clinical implications. Revista Psiquiatria Clinica 32, 189201.CrossRefGoogle Scholar
Pitman, R. K., Orr, S. P., Forgue, D. F., de Jong, J. B. & Claiborn, J. M. (1987). Psychophysiological assessment of posttraumatic stress disorder imagery in Vietnam combat veterans. Archives of General Psychiatry 44, 970975.CrossRefGoogle ScholarPubMed
Pitman, R. K., Shin, L. M. & Rauch, S. L. (2001). Investigating the pathogenesis of posttraumatic stress disorder with neuroimaging. Journal of Clinical Psychiatry 62 (Suppl. 17), 4754.Google ScholarPubMed
Poldrack, R. A. & Packard, M. G. (2003). Competition among multiple memory systems: converging evidence from animal and human brain studies. Neuropsychologia 41, 245251.Google Scholar
Rauch, S. L., van der Kolk, B. A., Fisler, R. E., Alpert, N. M., Orr, S. P., Savage, C. R., Fischman, A. J., Jenike, M. A. & Pitman, R. K. (1996). A symptom provocation study of posttraumatic stress disorder using positron emission tomography and script-driven imagery. Archives of General Psychiatry 53, 380387.Google Scholar
Rauch, S. L., Whalen, P. J., Shin, L. M., McInerney, S. C., Macklin, M. L., Lasko, N. B., Orr, S. P. & Pitman, R. K. (2000). Exaggerated amygdala response to masked facial stimuli in posttraumatic stress disorder: a functional MRI study. Biological Psychiatry 47, 769776.Google Scholar
Roffman, J. L., Marci, C. D., Glick, D. M., Dougherty, D. D. & Rauch, S. L. (2005). Neuroimaging and the functional neuroanatomy of psychotherapy. Psychological Medicine 35, 13851398.CrossRefGoogle ScholarPubMed
Rybakowski, J. (2002). Neurobiological aspects of psychotherapy theory and practice. Psychiatria Polska 36, 515.Google ScholarPubMed
Shin, L. M., McNally, R. J., Kosslyn, S. M., Thompson, W. L., Rauch, S. L., Alpert, N. M., Metzger, L. J., Lasko, N. B., Orr, S. P. & Pitman, R. K. (1999). Regional cerebral blood flow during scriptdriven imagery in childhood sexual abuse-related PTSD: a PET investigation. American Journal of Psychiatry 156, 575584.CrossRefGoogle ScholarPubMed
Shin, L. M., Orr, S. P., Carson, M. A., Rauch, S. L., Macklin, M. L., Lasko, N. B., Peters, P. M., Metzger, L. J., Dougherty, D. D., Cannistraro, P. A., Alpert, N. M., Fischman, A. J. & Pitman, R. K. (2004). Regional cerebral blood flow in the amygdala and medial prefrontal cortex during traumatic imagery in male and female Vietnam veterans with PTSD. Archives of General Psychiatry 61, 168176.CrossRefGoogle ScholarPubMed
Shin, L. M., Whalen, P. J., Pitman, R. K., Bush, G., Macklin, M. L., Lasko, N. B., Orr, S. P., McInerney, S. C. & Rauch, S. L. (2001). An fMRI study of anterior cingulate function in posttraumatic stress disorder. Biological Psychiatry 50, 932942.CrossRefGoogle ScholarPubMed
Spielberger, C. D., Gorsuch, R. L., Lushene, R. E., Vagg, P. R. & Jacobs, G. A. (1983). Manual for the Stait–Trait Anxiety Inventory. Consulting Psychologist Press: Palo Alto, CA.Google Scholar
Talairach, J. & Tournoux, P. (1988). Co-planar Stereotaxic Atlas of the Human Brain. Thieme Medical: New York.Google Scholar
The Expert Consensus Guideline series (1999). Treatment of posttraumatic stress disorder. The Expert Consensus Panels for PTSD. Journal of Clinical Psychiatry 60, 376.Google Scholar
Weiss, D. S., Marmar, C. R., Schlenger, W. E., Fairbank, J. A., Jordan, B. K., Hough, R. L. & Kulka, R. A. (1992). The prevalence of lifetime and partial stress disorder in Vietnam theater veterans. Journal of Traumatic Stress 5, 365376.Google Scholar
Wieser, S. & Wieser, H. G. (2003). Event-related brain potentials in memory: correlates of episodic, semantic and implicit memory. Clinical Neurophysiology 114, 11441152.Google Scholar
Zlotnick, C., Rodriguez, B. F., Weisberg, R. B., Bruce, S. E., Spencer, M. A., Culpepper, L. & Keller, M. B. (2004). Chronicity in posttraumatic stress disorder and predictors of the course of posttraumatic stress disorder among primary care patients. Journal of Nervous and Mental Disease 192, 153159.CrossRefGoogle ScholarPubMed