Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-27T19:17:45.050Z Has data issue: false hasContentIssue false

Childhood trauma moderates morphometric associations between orbitofrontal cortex and amygdala: implications for pathological personality traits

Published online by Cambridge University Press:  02 December 2020

Nadia Bounoua*
Affiliation:
Department of Psychological and Brain Sciences, University of Delaware, 108 Wolf Hall, Newark, 19716, DE, USA
Rickie Miglin
Affiliation:
Department of Psychological and Brain Sciences, University of Delaware, 108 Wolf Hall, Newark, 19716, DE, USA
Jeffrey M. Spielberg
Affiliation:
Department of Psychological and Brain Sciences, University of Delaware, 108 Wolf Hall, Newark, 19716, DE, USA
Curtis L. Johnson
Affiliation:
Department of Psychological and Brain Sciences, University of Delaware, 108 Wolf Hall, Newark, 19716, DE, USA
Naomi Sadeh
Affiliation:
Department of Psychological and Brain Sciences, University of Delaware, 108 Wolf Hall, Newark, 19716, DE, USA
*
Author for correspondence: Nadia Bounoua, E-mail: nbounoua@udel.edu

Abstract

Background

Research has demonstrated that chronic stress exposure early in development can lead to detrimental alterations in the orbitofrontal cortex (OFC)–amygdala circuit. However, the majority of this research uses functional neuroimaging methods, and thus the extent to which childhood trauma corresponds to morphometric alterations in this limbic-cortical network has not yet been investigated. This study had two primary objectives: (i) to test whether anatomical associations between OFC–amygdala differed between adults as a function of exposure to chronic childhood assaultive trauma and (ii) to test how these environment-by-neurobiological effects relate to pathological personality traits.

Methods

Participants were 137 ethnically diverse adults (48.1% female) recruited from the community who completed a clinical diagnostic interview, a self-report measure of pathological personality traits, and anatomical MRI scans.

Results

Findings revealed that childhood trauma moderated bilateral OFC–amygdala volumetric associations. Specifically, adults with childhood trauma exposure showed a positive association between medial OFC volume and amygdalar volume, whereas adults with no childhood exposure showed the negative OFC–amygdala structural association observed in prior research with healthy samples. Examination of the translational relevance of trauma-related alterations in OFC–amygdala volumetric associations for disordered personality traits revealed that trauma exposure moderated the association of OFC volume with antagonistic and disinhibited phenotypes, traits characteristic of Cluster B personality disorders.

Conclusions

The OFC–amygdala circuit is a potential anatomical pathway through which early traumatic experiences perpetuate emotional dysregulation into adulthood and confer risk for personality pathology. Results provide novel evidence of divergent neuroanatomical pathways to similar personality phenotypes depending on early trauma exposure.

Type
Original Article
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adolphs, R. (2002). Neural systems for recognizing emotion. Current Opinion in Neurobiology, 12(2), 169177. doi:10.1016/s0959-4388(02)00301-x.CrossRefGoogle ScholarPubMed
Albaugh, M. D., Ducharme, S., Collins, D. L., Botteron, K. N., Althoff, R. R., Evans, A. C., … Hudziak, J. J., & Brain Development Cooperative Group (2013). Evidence for a cerebral cortical thickness network anti-correlated with amygdalar volume in healthy youths: Implications for the neural substrates of emotion regulation. NeuroImage, 71, 4249. doi:10.1016/j.neuroimage.2012.12.071.CrossRefGoogle ScholarPubMed
Ameis, S. H., Ducharme, S., Albaugh, M. D., Hudziak, J. J., Botteron, K. N., Lepage, C., … Karama, S. (2014). Cortical thickness, cortico-amygdalar networks, and externalizing behaviors in healthy children. Biological Psychiatry, 75(1), 6572. doi:10.1016/j.biopsych.2013.06.008.CrossRefGoogle ScholarPubMed
Anderson, J. L., Sellbom, M., & Salekin, R. T. (2018). Utility of the personality inventory for DSM-5-brief form (PID-5-BF) in the measurement of maladaptive personality and psychopathology. Assessment, 25(5), 596607. doi:10.1177/1073191116676889.CrossRefGoogle ScholarPubMed
Antonucci, A. S., Gansler, D. A., Tan, S., Bhadelia, R., Patz, S., & Fulwiler, C. (2006). Orbitofrontal correlates of aggression and impulsivity in psychiatric patients. Psychiatry Research: Neuroimaging, 147(2–3), 213220. doi:10.1016/j.pscychresns.2005.05.016.CrossRefGoogle ScholarPubMed
Baas, D., Aleman, A., & Kahn, R. S. (2004). Lateralization of amygdala activation: A systematic review of functional neuroimaging studies. Brain Research. Brain Research Reviews, 45(2), 96103. doi:10.1016/j.brainresrev.2004.02.004.CrossRefGoogle ScholarPubMed
Bach, B., Sellbom, M., & Simonsen, E. (2018). Personality inventory for DSM-5 (PID-5) in clinical versus nonclinical individuals: Generalizability of psychometric features. Assessment, 25(7), 815825. doi:10.1177/1073191117709070CrossRefGoogle ScholarPubMed
Ball, J. S., & Links, P. S. (2009). Borderline personality disorder and childhood trauma: Evidence for a causal relationship. Current Psychiatry Reports, 11(1), 6368. doi:10.1007/s11920-009-0010-4.CrossRefGoogle ScholarPubMed
Banks, S. J., Eddy, K. T., Angstadt, M., Nathan, P. J., & Phan, K. L. (2007). Amygdala-frontal connectivity during emotion regulation. Social Cognitive and Affective Neuroscience, 2(4), 303312. doi:10.1093/scan/nsm029.CrossRefGoogle ScholarPubMed
Bechara, A., Damasio, H., & Damasio, A. R. (2000). Emotion, decision making and the orbitofrontal cortex. Cerebral Cortex (New York, N.Y.: 1991), 10(3), 295307. doi: 10.1093/cercor/10.3.295.CrossRefGoogle ScholarPubMed
Berenz, E. C., Amstadter, A. B., Aggen, S. H., Knudsen, G. P., Reichborn-Kjennerud, T., Gardner, C. O., & Kendler, K. S. (2013). Childhood trauma and personality disorder criterion counts: A co-twin control analysis. Journal of Abnormal Psychology, 122(4), 10701076. doi: 10.1037/a0034238.CrossRefGoogle ScholarPubMed
Blackmon, K., Barr, W. B., Carlson, C., Devinsky, O., DuBois, J., Pogash, D., … Thesen, T. (2011). Structural evidence for involvement of a left amygdala-orbitofrontal network in subclinical anxiety. Psychiatry Research: Neuroimaging, 194(3), 296303. doi:10.1016/j.pscychresns.2011.05.007.CrossRefGoogle ScholarPubMed
Blair, R. J. R. (2004). The roles of orbital frontal cortex in the modulation of antisocial behavior. Brain and Cognition, 55(1), 198208. doi:10.1016/S0278-2626(03)00276-8.CrossRefGoogle ScholarPubMed
Blair, H. T., Tinkelman, A., Moita, M. A. P., & LeDoux, J. E. (2003). Associative plasticity in neurons of the lateral amygdala during auditory fear conditioning. Annals of the New York Academy of Sciences, 985, 485487. doi:10.1111/j.1749-6632.2003.tb07106.x.CrossRefGoogle ScholarPubMed
Bounoua, N., Miglin, R., Spielberg, J. M., & Sadeh, N. (2020). Childhood assaultive trauma and physical aggression: Links with cortical thickness in prefrontal and occipital cortices. NeuroImage: Clinical, 27, 102321. doi:10.1016/j.nicl.2020.102321.CrossRefGoogle ScholarPubMed
Carr, C. P., Martins, C. M. S., Stingel, A. M., Lemgruber, V. B., & Juruena, M. F. (2013). The role of early life stress in adult psychiatric disorders: A systematic review according to childhood trauma subtypes. The Journal of Nervous and Mental Disease, 201(12), 10071020. doi:10.1097/NMD.0000000000000049.CrossRefGoogle ScholarPubMed
Cassiers, L. L. M., Sabbe, B. G. C., Schmaal, L., Veltman, D. J., Penninx, B. W. J. H., & Van Den Eede, F. (2018). Structural and functional brain abnormalities associated with exposure to different childhood trauma subtypes: A systematic review of neuroimaging findings. Frontiers in Psychiatry, 9, 329. doi:10.3389/fpsyt.2018.00329.CrossRefGoogle ScholarPubMed
Chanen, A. M., Velakoulis, D., Carison, K., Gaunson, K., Wood, S. J., Yuen, H. P., … Pantelis, C. (2008). Orbitofrontal, amygdala and hippocampal volumes in teenagers with first-presentation borderline personality disorder. Psychiatry Research: Neuroimaging, 163(2), 116125. doi:10.1016/j.pscychresns.2007.08.007.CrossRefGoogle ScholarPubMed
Chen, X., Sachdev, P. S., Wen, W., & Anstey, K. J. (2007). Sex differences in regional gray matter in healthy individuals aged 44–48 years: A voxel-based morphometric study. NeuroImage, 36(3), 691699. doi:10.1016/j.neuroimage.2007.03.063.CrossRefGoogle ScholarPubMed
Cho, S. S., Pellecchia, G., Aminian, K., Ray, N., Segura, B., Obeso, I., & Strafella, A. P. (2013). Morphometric correlation of impulsivity in medial prefrontal cortex. Brain Topography, 26(3), 479487. doi:10.1007/s10548-012-0270-x.CrossRefGoogle ScholarPubMed
Cisler, J. M., Begle, A. M., Amstadter, A. B., Resnick, H. S., Danielson, C. K., Saunders, B. E., & Kilpatrick, D. G. (2012). Exposure to interpersonal violence and risk for PTSD, depression, delinquency, and binge drinking among adolescents: Data from the NSA-R. Journal of Traumatic Stress, 25(1), 3340. doi:10.1002/jts.21672.CrossRefGoogle ScholarPubMed
Coccaro, E. F., Keedy, S. K., Gorka, S. M., King, A. C., Fanning, J. R., Lee, R. J., & Phan, K. L. (2016). Differential fMRI BOLD responses in amygdala in intermittent explosive disorder as a function of past alcohol use disorder. Psychiatry Research. Neuroimaging, 257, 510. doi:10.1016/j.pscychresns.2016.09.001.CrossRefGoogle ScholarPubMed
Coccaro, E. F., Lee, R., McCloskey, M., Csernansky, J. G., & Wang, L. (2015). Morphometric analysis of amygdala and hippocampus shape in impulsively aggressive and healthy control subjects. Journal of Psychiatric Research, 69, 8086. doi:10.1016/j.jpsychires.2015.07.009.CrossRefGoogle ScholarPubMed
Cross, D., Fani, N., Powers, A., & Bradley, B. (2017). Neurobiological development in the context of childhood trauma. Clinical Psychology: Science and Practice, 24(2), 111124.Google ScholarPubMed
Dedovic, K., Duchesne, A., Andrews, J., Engert, V., & Pruessner, J. C. (2009). The brain and the stress axis: The neural correlates of cortisol regulation in response to stress. NeuroImage, 47(3), 864871. doi:10.1016/j.neuroimage.2009.05.074.CrossRefGoogle ScholarPubMed
DeLisi, M., Drury, A. J., & Elbert, M. J. (2019). The etiology of antisocial personality disorder: The differential roles of adverse childhood experiences and childhood psychopathology. Comprehensive Psychiatry, 92, 16. doi:10.1016/j.comppsych.2019.04.001.CrossRefGoogle ScholarPubMed
DeYoung, C. G. (2010). Personality neuroscience and the biology of traits. Social and Personality Psychology Compass, 4(12), 11651180.CrossRefGoogle Scholar
DeYoung, C. G., Hirsh, J. B., Shane, M. S., Papademetris, X., Rajeevan, N., & Gray, J. R. (2010). Testing predictions from personality neuroscience. Brain structure and the big five. Psychological Science, 21(6), 820828. doi:10.1177/0956797610370159.CrossRefGoogle ScholarPubMed
Edmiston, E. K., & Blackford, J. U. (2013). Childhood maltreatment and response to novel face stimuli presented during functional magnetic resonance imaging in adults. Psychiatry Research: Neuroimaging, 212(1), 3642. doi:10.1016/j.pscychresns.2012.11.009.CrossRefGoogle ScholarPubMed
First, M. B. (2014). Structured clinical interview for the DSM (SCID). The Encyclopedia of Clinical Psychology, 16.Google Scholar
Garcia, R., Vouimba, R.-M., Baudry, M., & Thompson, R. F. (1999). The amygdala modulates prefrontal cortex activity relative to conditioned fear. Nature, 402(6759), 294296.CrossRefGoogle ScholarPubMed
Gee, D. G., & Casey, B. J. (2015). The impact of developmental timing for stress and recovery. Neurobiology of Stress, 1, 184194. doi:10.1016/j.ynstr.2015.02.001.CrossRefGoogle ScholarPubMed
Ghashghaei, H. T., Hilgetag, C. C., & Barbas, H. (2007). Sequence of information processing for emotions based on the anatomic dialogue between prefrontal cortex and amygdala. NeuroImage, 34(3), 905923. doi:10.1016/j.neuroimage.2006.09.046.CrossRefGoogle ScholarPubMed
Gong, G., He, Y., Chen, Z. J., & Evans, A. C. (2012). Convergence and divergence of thickness correlations with diffusion connections across the human cerebral cortex. NeuroImage, 59(2), 12391248. doi:10.1016/j.neuroimage.2011.08.017.CrossRefGoogle ScholarPubMed
Goodman, M., & Yehuda, R. (2002). The relationship between psychological trauma and borderline personality disorder. Psychiatric Annals, 32(6), 337345.CrossRefGoogle Scholar
Groman, S. M., Keistler, C., Keip, A. J., Hammarlund, E., DiLeone, R. J., Pittenger, C., … Taylor, J. R. (2019). Orbitofrontal circuits control multiple reinforcement-learning processes. Neuron, 103(4), 734746.CrossRefGoogle ScholarPubMed
Hagler, D. J. Jr, Saygin, A. P., & Sereno, M. I. (2006). Smoothing and cluster thresholding for cortical surface-based group analysis of fMRI data. Neuroimage, 33(4), 10931103.CrossRefGoogle ScholarPubMed
Hahn, T., Dresler, T., Ehlis, A.-C., Plichta, M. M., Heinzel, S., Polak, T., … Fallgatter, A. J. (2009). Neural response to reward anticipation is modulated by Gray's impulsivity. Neuroimage, 46(4), 11481153.CrossRefGoogle ScholarPubMed
Hanson, J. L., Chung, M. K., Avants, B. B., Shirtcliff, E. A., Gee, J. C., Davidson, R. J., & Pollak, S. D. (2010). Early stress is associated with alterations in the orbitofrontal cortex: A tensor-based morphometry investigation of brain structure and behavioral risk. Journal of Neuroscience, 30(22), 74667472.CrossRefGoogle ScholarPubMed
Hart, H., & Rubia, K. (2012). Neuroimaging of child abuse: A critical review. Frontiers in Human Neuroscience, 6, 52.CrossRefGoogle ScholarPubMed
Hayes, A. F. (2018). Introduction to mediation, moderation, and conditional process analysis second edition: A regression-based approach. New York, NY: Ebook The Guilford Press. Google Scholar.Google Scholar
He, Y., Chen, Z. J., & Evans, A. C. (2007). Small-world anatomical networks in the human brain revealed by cortical thickness from MRI. Cerebral Cortex, 17(10), 24072419. doi:10.1093/cercor/bhl149.CrossRefGoogle ScholarPubMed
Heim, C., & Nemeroff, C. B. (2001). The role of childhood trauma in the neurobiology of mood and anxiety disorders: Preclinical and clinical studies. Biological Psychiatry, 49(12), 10231039. doi:10.1016/S0006-3223(01)01157-X.CrossRefGoogle ScholarPubMed
IBM SPSS (n.d.). Corp (2013). IBM SPSS statistics for windows, version 22.0. Armonk, NY: IBM Corp.Google Scholar
Jackson, J., Balota, D. A., & Head, D. (2011). Exploring the relationship between personality and regional brain volume in healthy aging. Neurobiology of Aging, 32(12), 21622171. doi:10.1016/j.neurobiolaging.2009.12.009.CrossRefGoogle ScholarPubMed
Johnson, S. L., Elliott, M. V., & Carver, C. S. (2020). Impulsive responses to positive and negative emotions: Parallel neurocognitive correlates and their implications. Biological Psychiatry, 87(4), 338349. doi:10.1016/j.biopsych.2019.08.018.CrossRefGoogle ScholarPubMed
Kalin, N. H., Shelton, S. E., & Davidson, R. J. (2007). Role of the primate orbitofrontal cortex in mediating anxious temperament. Biological Psychiatry, 62(10), 11341139. doi:10.1016/j.biopsych.2007.04.004.CrossRefGoogle ScholarPubMed
Kerr, K. L., Avery, J. A., Barcalow, J. C., Moseman, S. E., Bodurka, J., Bellgowan, P. S. F., & Simmons, W. K. (2015). Trait impulsivity is related to ventral ACC and amygdala activity during primary reward anticipation. Social Cognitive and Affective Neuroscience, 10(1), 3642. doi: 10.1093/scan/nsu023.CrossRefGoogle ScholarPubMed
Kim, M. J., Gee, D. G., Loucks, R. A., Davis, F. C., & Whalen, P. J. (2011). Anxiety dissociates dorsal and ventral medial prefrontal cortex functional connectivity with the amygdala at rest. Cerebral Cortex, 21(7), 16671673. doi:10.1093/cercor/bhq237.CrossRefGoogle ScholarPubMed
Krueger, R. F., Derringer, J., Markon, K. E., Watson, D., & Skodol, A. E. (2013). The personality inventory for DSM-5 – brief form (PID-5-BF) – adult. Washington, DC: American Psychiatric Association.Google Scholar
Lim, L., Hart, H., Howells, H., Mehta, M. A., Simmons, A., Mirza, K., & Rubia, K. (2019). Altered white matter connectivity in young people exposed to childhood abuse: A tract-based spatial statistics (TBSS) and tractography study. Journal of Psychiatry & Neuroscience: JPN, 44(4), E11E20. doi: 10.1503/jpn.170241.CrossRefGoogle ScholarPubMed
Lim, L., Radua, J., & Rubia, K. (2014). Gray matter abnormalities in childhood maltreatment: A voxel-wise meta-analysis. American Journal of Psychiatry, 171(8), 854863. doi: 10.1176/appi.ajp.2014.13101427.CrossRefGoogle ScholarPubMed
Linehan, M. M. (1993). Skills training manual for treating borderline personality disorder (pp. xii). New York City, NY: Guilford Press.Google Scholar
Lupien, S. J., McEwen, B. S., Gunnar, M. R., & Heim, C. (2009). Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nature Reviews Neuroscience, 10(6), 434445. doi: 10.1038/nrn2639.CrossRefGoogle ScholarPubMed
McGaugh, J. L. (2002). Memory consolidation and the amygdala: A systems perspective. Trends in Neurosciences, 25(9), 456461. doi:10.1016/S0166-2236(02)02211-7.CrossRefGoogle ScholarPubMed
McLaughlin, K. A., & Lambert, H. K. (2017). Child trauma exposure and psychopathology: Mechanisms of risk and resilience. Current Opinion in Psychology, 14, 2934. doi: 10.1016/j.copsyc.2016.10.004.CrossRefGoogle ScholarPubMed
Mincic, A. M. (2015). Neuroanatomical correlates of negative emotionality-related traits: A systematic review and meta-analysis. Neuropsychologia, 77, 97118. doi: 10.1016/j.neuropsychologia.2015.08.007.CrossRefGoogle ScholarPubMed
Moreno-López, L., Ioannidis, K., Askelund, A. D., Smith, A. J., Schueler, K., & van Harmelen, A.-L. (2020). The resilient emotional brain: A scoping review of the medial prefrontal cortex and limbic structure and function in resilient adults with a history of childhood maltreatment. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 5(4), 392402. doi:10.1016/j.bpsc.2019.12.008.Google ScholarPubMed
Morey, R. A., Haswell, C. C., Hooper, S. R., & De Bellis, M. D. (2016). Amygdala, hippocampus, and ventral medial prefrontal cortex volumes differ in maltreated youth with and without chronic posttraumatic stress disorder. Neuropsychopharmacology, 41(3), 791801. doi:10.1038/npp.2015.205.CrossRefGoogle ScholarPubMed
Ochsner, K. N., Ray, R. D., Cooper, J. C., Robertson, E. R., Chopra, S., Gabrieli, J. D., & Gross, J. J. (2004). For better or for worse: Neural systems supporting the cognitive down-and up-regulation of negative emotion. Neuroimage, 23(2), 483499.CrossRefGoogle ScholarPubMed
Öhman, A. (2005). The role of the amygdala in human fear: Automatic detection of threat. Psychoneuroendocrinology, 30(10), 953958. doi:10.1016/j.psyneuen.2005.03.019.CrossRefGoogle ScholarPubMed
Paquola, C., Wael, R. V. D., Wagstyl, K., Bethlehem, R. A. I., Hong, S.-J., Seidlitz, J., … Bernhardt, B. C. (2019). Microstructural and functional gradients are increasingly dissociated in transmodal cortices. PLoS Biology, 17(5), e3000284. doi:10.1371/journal.pbio.3000284.CrossRefGoogle ScholarPubMed
Phan, K. L., Fitzgerald, D. A., Nathan, P. J., Moore, G. J., Uhde, T. W., & Tancer, M. E. (2005). Neural substrates for voluntary suppression of negative affect: A functional magnetic resonance imaging study. Biological Psychiatry, 57(3), 210219. doi:10.1016/j.biopsych.2004.10.030.CrossRefGoogle ScholarPubMed
Phillips, M. L., Ladouceur, C. D., & Drevets, W. C. (2008). A neural model of voluntary and automatic emotion regulation: Implications for understanding the pathophysiology and neurodevelopment of bipolar disorder. Molecular Psychiatry, 13(9), 829, 833–857. doi:10.1038/mp.2008.65.CrossRefGoogle ScholarPubMed
Pine, D. S., & Cohen, J. A. (2002). Trauma in children and adolescents: Risk and treatment of psychiatric sequelae. Biological Psychiatry, 51(7), 519531. doi:10.1016/S0006-3223(01)01352-X.CrossRefGoogle ScholarPubMed
Pompili, M., Innamorati, M., Lamis, D. A., Erbuto, D., Venturini, P., Ricci, F., … Girardi, P. (2014). The associations among childhood maltreatment, ‘male depression’ and suicide risk in psychiatric patients. Psychiatry Research, 220(1), 571578. doi: 10.1016/j.psychres.2014.07.056.CrossRefGoogle Scholar
Porter, C., Palmier-Claus, J., Branitsky, A., Mansell, W., Warwick, H., & Varese, F. (2020). Childhood adversity and borderline personality disorder: A meta-analysis. Acta Psychiatrica Scandinavica, 141(1), 620. doi:10.1111/acps.13118.CrossRefGoogle ScholarPubMed
Raine, A. (2008). From genes to brain to antisocial behavior. Current Directions in Psychological Science, 17(5), 323328. doi:10.1111/j.1467-8721.2008.00599.x.CrossRefGoogle Scholar
Raine, A. (2018). Antisocial personality as a neurodevelopmental disorder. Annual Review of Clinical Psychology, 14(1), 259289. doi:10.1146/annurev-clinpsy-050817-084819.CrossRefGoogle ScholarPubMed
Ray, R. D., & Zald, D. H. (2012). Anatomical insights into the interaction of emotion and cognition in the prefrontal cortex. Neuroscience & Biobehavioral Reviews, 36(1), 479501. doi:10.1016/j.neubiorev.2011.08.005.CrossRefGoogle ScholarPubMed
Roy, A. K., Shehzad, Z., Margulies, D. S., Kelly, A. M. C., Uddin, L. Q., Gotimer, K., … Milham, M. P. (2009). Functional connectivity of the human amygdala using resting state fMRI. NeuroImage, 45(2), 614626. doi:10.1016/j.neuroimage.2008.11.030.CrossRefGoogle ScholarPubMed
Sadeh, N., Miller, M. W., Wolf, E. J., & Harkness, K. L. (2015). Negative emotionality and disconstraint influence PTSD symptom course via exposure to new major adverse life events. Journal of Anxiety Disorders, 31, 2027. doi:10.1016/j.janxdis.2015.01.003.CrossRefGoogle ScholarPubMed
Salat, D. H., Buckner, R. L., Snyder, A. Z., Greve, D. N., Desikan, R. S. R., Busa, E., … Fischl, B. (2004). Thinning of the cerebral cortex in aging. Cerebral Cortex, 14(7), 721730. doi:10.1093/cercor/bhh032.CrossRefGoogle Scholar
Saxbe, D., Lyden, H., Gimbel, S. I., Sachs, M., Piero, L. B. D., Margolin, G., & Kaplan, J. T. (2018). Longitudinal associations between family aggression, externalizing behavior, and the structure and function of the amygdala. Journal of Research on Adolescence, 28(1), 134149. doi:10.1111/jora.12349.CrossRefGoogle ScholarPubMed
Saygin, Z. M., Kliemann, D., Iglesias, J. E., van der Kouwe, A. J. W., Boyd, E., Reuter, M., … Augustinack, J. C. (2017). High-resolution magnetic resonance imaging reveals nuclei of the human amygdala: Manual segmentation to automatic atlas. NeuroImage, 155, 370382. doi:10.1016/j.neuroimage.2017.04.046.CrossRefGoogle ScholarPubMed
Shonkoff, J. P., Garner, A. S., The Committee on Psychosocial Aspects of Child and Family Health; Committee on Early Childhood, Adoption, and Dependent Care; Section on Developmental and Behavioral Pediatrics, Siegel, B. S., Dobbins, M. I., Earls, M. F., Garner, A. S., … Wood, D. L. (2012). The lifelong effects of early childhood adversity and toxic stress. Pediatrics, 129(1), e232e246. doi:10.1542/peds.2011-2663.CrossRefGoogle ScholarPubMed
Soloff, P. H., Abraham, K., Ramaseshan, K., Burgess, A., & Diwadkar, V. A. (2017). Hyper-modulation of brain networks by the amygdala among women with borderline personality disorder: Network signatures of affective interference during cognitive processing. Journal of Psychiatric Research, 88, 5663. doi:10.1016/j.jpsychires.2016.12.016.CrossRefGoogle ScholarPubMed
Stein, J. L., Wiedholz, L. M., Bassett, D. S., Weinberger, D. R., Zink, C. F., Mattay, V. S., & Meyer-Lindenberg, A. (2007). A validated network of effective amygdala connectivity. NeuroImage, 36(3), 736745. doi:10.1016/j.neuroimage.2007.03.022.CrossRefGoogle ScholarPubMed
Taki, Y., & Kawashima, R. (2012). Brain development in childhood. The Open Neuroimaging Journal, 6, 103110. doi:10.2174/1874440001206010103.CrossRefGoogle ScholarPubMed
Tarullo, A. R., & Gunnar, M. R. (2006). Child maltreatment and the developing HPA axis. Hormones and Behavior, 50(4), 632639. doi:10.1016/j.yhbeh.2006.06.010.CrossRefGoogle ScholarPubMed
Tebartz van Elst, L., Hesslinger, B., Thiel, T., Geiger, E., Haegele, K., Lemieux, L., … Ebert, D. (2003). Frontolimbic brain abnormalities in patients with borderline personality disorder: A volumetric magnetic resonance imaging study. Biological Psychiatry, 54(2), 163171. doi:10.1016/S0006-3223(02)01743-2.CrossRefGoogle ScholarPubMed
Tottenham, N., & Galván, A. (2016). Stress and the adolescent brain: Amygdala-prefrontal cortex circuitry and ventral striatum as developmental targets. Neuroscience & Biobehavioral Reviews, 70, 217227. doi:10.1016/j.neubiorev.2016.07.030.CrossRefGoogle ScholarPubMed
van der Kouwe, A. J. W., Benner, T., Salat, D. H., & Fischl, B. (2008). Brain morphometry with multiecho MPRAGE. NeuroImage, 40(2), 559569. doi:10.1016/j.neuroimage.2007.12.025.CrossRefGoogle ScholarPubMed
van der Werff, S. J. A., Pannekoek, J. N., Veer, I. M., van Tol, M.-J., Aleman, A., Veltman, D. J., … van der Wee, N. J. A. (2013). Resting-state functional connectivity in adults with childhood emotional maltreatment. Psychological Medicine, 43(9), 18251836. doi:10.1017/S0033291712002942.CrossRefGoogle ScholarPubMed
van voorhees, E., & Scarpa, A. (2004). The effects of child maltreatment on the hypothalamic-pituitary-adrenal axis. Trauma, Violence, & Abuse, 5(4), 333352. doi:10.1177/1524838004269486.CrossRefGoogle ScholarPubMed
Wang, Q., Chen, C., Cai, Y., Li, S., Zhao, X., Zheng, L., … Xue, G. (2016). Dissociated neural substrates underlying impulsive choice and impulsive action. NeuroImage, 134, 540549. doi:10.1016/j.neuroimage.2016.04.010.CrossRefGoogle ScholarPubMed
Wilbertz, G., Tebartz van Elst, L., Delgado, M. R., Maier, S., Feige, B., Philipsen, A., & Blechert, J. (2012). Orbitofrontal reward sensitivity and impulsivity in adult attention deficit hyperactivity disorder. NeuroImage, 60(1), 353361. doi:10.1016/j.neuroimage.2011.12.011.CrossRefGoogle ScholarPubMed
Wright, P., Albarracin, D., Brown, R. D., Li, H., He, G., & Liu, Y. (2008). Dissociated responses in the amygdala and orbitofrontal cortex to bottom-up and top-down components of emotional evaluation. NeuroImage, 39(2), 894902. doi:10.1016/j.neuroimage.2007.09.014.CrossRefGoogle ScholarPubMed
Wright, C. I., Williams, D., Feczko, E., Barrett, L. F., Dickerson, B. C., Schwartz, C. E., & Wedig, M. M. (2006). Neuroanatomical correlates of extraversion and neuroticism. Cerebral Cortex, 16(12), 18091819. doi:10.1093/cercor/bhj118.CrossRefGoogle ScholarPubMed
Yang, Y., & Raine, A. (2007). Functional and structural brain imaging research on psychopathy. International Handbook of Psychopathic Disorders and the Law, 1, 6981. https://doi.org/10.1002/9780470516157.ch4.Google Scholar
Yang, Y., & Raine, A. (2009). Prefrontal structural and functional brain imaging findings in antisocial, violent, and psychopathic individuals: A meta-analysis. Psychiatry Research: Neuroimaging, 174(2), 8188. doi:10.1016/j.pscychresns.2009.03.012.CrossRefGoogle ScholarPubMed
Zielinski, B. A., Gennatas, E. D., Zhou, J., & Seeley, W. W. (2010). Network-level structural covariance in the developing brain. Proceedings of the National Academy of Sciences of the USA, 107(42), 1819118196. doi:10.1073/pnas.1003109107.CrossRefGoogle ScholarPubMed