Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2025-01-01T07:31:11.921Z Has data issue: false hasContentIssue false

Choline uptake in patients with Alzheimer pre-senile dementia

Published online by Cambridge University Press:  09 July 2009

A. I. M. Glen
Affiliation:
MRC Brain Metabolism Unit, Thomas Clouston Clinic, Royal Edinburgh Hospital, Edinburgh
C. M. Yates*
Affiliation:
MRC Brain Metabolism Unit, Thomas Clouston Clinic, Royal Edinburgh Hospital, Edinburgh
J. Simpson
Affiliation:
MRC Brain Metabolism Unit, Thomas Clouston Clinic, Royal Edinburgh Hospital, Edinburgh
J. E. Christie
Affiliation:
MRC Brain Metabolism Unit, Thomas Clouston Clinic, Royal Edinburgh Hospital, Edinburgh
A. Shering
Affiliation:
MRC Brain Metabolism Unit, Thomas Clouston Clinic, Royal Edinburgh Hospital, Edinburgh
L. J. Whalley
Affiliation:
MRC Brain Metabolism Unit, Thomas Clouston Clinic, Royal Edinburgh Hospital, Edinburgh
E. H. Jellinek
Affiliation:
MRC Brain Metabolism Unit, Thomas Clouston Clinic, Royal Edinburgh Hospital, Edinburgh
*
1Address for correspondence: Dr C. M. Yates, MRC Brain Metabolism Unit, Department of Pharmacology, University of Edinburgh, 1 George Square, Edinburgh EH8 9JZ.

Synopsis

Serum and CSF choline levels were measured in 12 patients with pre-senile Alzheimer's disease before and 1 hour after administration of 1·5 g choline chloride or 25 g lecithin granules. Serum choline levels were increased threefold and CSF choline levels by 72%. CSF choline levels in the untreated Alzheimer patients did not differ significantly from age-matched controls. In 35 neurological controls, CSF choline levels increased with age (γ = 0·64, P<0·001).

Choline influx into erythrocytes from 10 male and female Alzheimer patients did not differ significantly from 40 male and 43 female controls. Choline influx into erythrocytes was not related to age or sex, although the range was greater (P <0·05) in females than in males.

Our results indicate that there is no impairment of choline transport into CSF or erythrocytes in patients with pre-senile Alzheimer's disease.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aquilonius, S-M. & Winblad, B.. (1972). CSF clearance of choline and some other amines. Acta physiologica scandinavica 85, 7890.CrossRefGoogle Scholar
Aquilonius, S-M., Schuberth, J. & Sundwall, A. (1970). Studies on choline in cerebrospinal fluid. Acta pharmacologica toxicologica 28, Supp. 1, 35.Google ScholarPubMed
Barker, L. A. & Mittag, T. W. (1975). Comparative studies of substrates and inhibitors of choline transport and choline acetyltransferase. Journal of Pharmacology and Experimental Therapeutics 192, 8794.Google ScholarPubMed
Bowen, D. M. & Davison, A. N. (1978). Changes in brain lysosomal activity, neurotransmitter-related enzymes, and other proteins in senile dementia. In Alzheimer's Disease: Senile Dementia and Related Disorders (Aging, Vol. 7) (ed. Katzman, R., Terry, R. D. and Bick, K. L.), pp. 421424. Raven Press: New York.Google Scholar
Bowers, M. B. (1972). Clinical measurements of the central dopamine and 5-hydroxytryptamine metabolism: reliability and interpretation of cerebrospinal fluid acid monoamine metabolite measures. Neuropharmacology 11, 101111.CrossRefGoogle Scholar
Burger, P. G. & Vogel, F. S. (1973). The development of the pathologic changes of Alzheimer's disease and senile dementia in patients with Down's syndrome.American Journal of Pathology 73,457468.Google ScholarPubMed
Christie, J. E., Blackburn, I. M., Glen, A. I. M., Zeisel, S., Shering, A. & Yates, C. M. (1979). Effects of choline and lecithin on CSF choline levels and on cognitive function in patients with presenile dementia of the Alzheimer type. In Nutrition and the Brain, Vol. 5 (ed. Barbeau, A., Growdon, J. H. and Wurtman, R. J.), pp. 377387. Raven Press:New York.Google Scholar
Cohen, E. L. & Wurtman, R. J. (1976). Brain acetylcholine: control by dietary choline. Science 191,561562.CrossRefGoogle ScholarPubMed
Cornford, E. M., Braun, L. D.. & Oldendorf, W. H. (1978). Carrier-mediated blood-brain barrier transport of choline and certain choline analogues. Journal of Neurochemistry 30,299308.CrossRefGoogle Scholar
Cross, A. J., Crow, T. J., Perry, E. K., Perry, R. H., Blessed, G. & Tomlinson, B. E. (1981). Reduced dopamine β-hydroxylase activity in Alzheimer's disease. British Medical Journal 282,9394.CrossRefGoogle ScholarPubMed
Davies, P. & Maloney, A. F. J. (1976). Selective loss of cholinergic neurons in Alzheimer's disease. Lancet ii, 1403.CrossRefGoogle Scholar
Davies, P., Katzman, R. & Terry, R. D. (1980). Reduced somatostatin-like immunoreactivity in cerebral cortex from cases of Alzheimer disease and Alzheimer senile dementia. Nature 288, 279280.CrossRefGoogle Scholar
Eckernäs, S-A. & Aquilonius, S-M. (1977). Free choline in human plasma analysed by simple radio-enzymatic procedure: age distribution and effect of a meal. Scandinavian Journal of Clinical Laboratory Investigation 37, 183187.CrossRefGoogle ScholarPubMed
Ellis, W. G., McCulloch, J. R. & Corley, C. L. (1974). Presenile dementia in Down's syndrome. Neurology 24, 101106.CrossRefGoogle ScholarPubMed
Flentge, F. & Van den Berg, C. J. (1979). Choline administration and acetylcholine in brain. Journal of Neurochemistry 32, 13311333.CrossRefGoogle ScholarPubMed
Fonnum, F. (1975). A rapid radiochemical method for the determination of choline acetyltransferase. Journal of Neurochemistry 24,407409.CrossRefGoogle Scholar
Gardiner, J. E. & Domer, F. R. (1968). Movement of choline between the blood and CSF in the cat. Archives Internationales de Pharmacodynamie et de Thérapie 175, 482496.Google Scholar
Gottfries, C. G., Gottfries, I., Johansson, B., Olsson, R., Persson, T., Roos, B-E. & Sjöstrom, R.(1971). Age monoamine metabolites in human CSF and their relations to age and sex. Neuropharmacology 10,665672.CrossRefGoogle Scholar
Growdon, J. H., Cohen, E. L. &Wurtman, R. J. (1977). Effects of oral choline administration on serum and CSF choline levels in patients with Huntington's disease. Journal of Neurochemistry 28, 229231.CrossRefGoogle Scholar
Haga, T. & Noda, H. (1973). Choline uptake systems of rat brain synaptosomes. Biochimica biophysica acta 291, 564575.CrossRefGoogle ScholarPubMed
Hirsch, M. J., Growdon, J. H. & Wurtman, R. J. (1978). Relations between dietary choline on lecithin intake, serum choline levels, and various metabolic indices. Metabolism 27,953960.CrossRefGoogle ScholarPubMed
Hirsch, M. J. & Wurtman, R. J. (1978). Lecithin consumption elevates acetylcholine concentrations in rat brain and adrenal gland. Science 202,223224.CrossRefGoogle Scholar
Klaver, M. M., Flentge, F., Nienhuis-Kuiper, H. E. & van Praag, H. M. (1979). The origin of CSF choline and is relation to acetylcholine metabolism in brain. Life Sciences 24,231236.CrossRefGoogle ScholarPubMed
Lee, G., Lingsch, C., Lyle, P. T. & Martin, K. (1974). Lithium treatment strongly inhibits choline transport in human erythrocytes. British Journal of Clinical Pharmacology 1, 365370.CrossRefGoogle ScholarPubMed
Mannervik, B. & Sorbo, B. (1970). Inhibition of choline acetyltransferase from bovine caudate nucleus by sulfhy-dryl reagents and reactivation of the inhibited enzyme. Biochemical Pharmacology 19,25092516.CrossRefGoogle ScholarPubMed
Martin, K. (1968). Concentrative accumulation of choline by human erythrocytes. Journal of General Physiology 51, 497516.CrossRefGoogle ScholarPubMed
Martin, K. (1972). Extracellular cations and the movement of choline across the erythrocyte membrane. Journal of Physiology. 224,207230.CrossRefGoogle ScholarPubMed
Olson, M. I. & Shaw, C. M. (1969). Presenile dementia and Alzheimer's disease in mongolism. Brain 92,147156.CrossRefGoogle ScholarPubMed
Perry, E. K., Perry, R. H., Blessed, G. & Tomlinson, B. E. (1977).Necropsy evidence of central cholinergic deficits in senile dementia. Lancet i,189.CrossRefGoogle Scholar
Perry, E. K., Perry, R. H., Blessed, G. & Tomlinson, B. E. (1978). Changes in brain cholinesterases in senile dementia of Alzheimer type.Neuropathology and Applied Neurobiology 4,273277.CrossRefGoogle ScholarPubMed
Schuberth, J. & Jenden, D. J. (1975). Transport of choline from plasma to CSF in the rabbit with reference to the origin of choline and to acetylcholine metabolism in brain. Brain Research 84,245256.CrossRefGoogle Scholar
Shea, P. A. & Aprison, M. H. (1973). An enzymatic method for measuring picomole quantities of acetylcholine and choline in CNS tissue. Analytical Biochemistry 56. 165177.CrossRefGoogle ScholarPubMed
Simon, J. R., Atweh, S. & Kuhar, M. J. (1976). Sodium-dependent high affinity choline uptake: a regulatory step in the synthesis of acetylcholine. Journal of Neurochemistry 26,909922.CrossRefGoogle ScholarPubMed
Sims, N. R., Bowen, D. M., Smith, C. C. T., Flack, R. H. A., Davison, A. N., Snowden, J. S. & Neary, D. (1980). Glucose metabolism and acetylcholine synthesis in relation to neuronal activity in Alzheimer's disease. Lancet i 333336.CrossRefGoogle Scholar
Wecker, L. & Schmidt, D. E. (1980). Neuropharmacological consequences of choline administration. Brain Research 184,234238.CrossRefGoogle ScholarPubMed
Whalley, L. J. & Simpson, J. (1979). 14C-Choline transport into red blood cells. Biological Psychiatry 14,979982.Google ScholarPubMed
Wisniewski, K., Howe, J., Williams, D. G. & Wisniewski, H. M. (1978). Precocious aging and dementia in patients with Down's syndrome. Biological Psychiatry 13,619627.Google ScholarPubMed
Wurtman, R. J., Hirsch, M. J. & Growdon, J. H. (1977).Lecithin consumption raises serum-free-choline levels. Lancet ii, 6869.CrossRefGoogle Scholar
Yamamura, H. I. & Snyder, S. H. (1973). High affinity transport of choline into synaptosomes of rat brain. Journal of Neurochemistry 21,13551374.CrossRefGoogle ScholarPubMed
Yates, C. M., Simpson, J., Maloney, A. F. J., Gordon, A. & Reid, A. H. (1980). Alzheimer-like cholinergic deficiency in Down's syndrome. Lancet ii, 979.CrossRefGoogle Scholar