Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-27T04:36:18.826Z Has data issue: false hasContentIssue false

Decreased cortical gyrification in major depressive disorder

Published online by Cambridge University Press:  08 May 2023

Youbin Kang
Affiliation:
Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
Wooyoung Kang
Affiliation:
Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
Aram Kim
Affiliation:
Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
Woo-Suk Tae
Affiliation:
Brain Convergence Research Center, Korea University, Seoul, Republic of Korea
Byung-Joo Ham*
Affiliation:
Brain Convergence Research Center, Korea University, Seoul, Republic of Korea Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
Kyu-Man Han*
Affiliation:
Brain Convergence Research Center, Korea University, Seoul, Republic of Korea Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
*
Corresponding author: Kyu-Man Han; Email: han272@korea.ac.kr; Byung-Joo Ham; Email: hambj@korea.ac.kr
Corresponding author: Kyu-Man Han; Email: han272@korea.ac.kr; Byung-Joo Ham; Email: hambj@korea.ac.kr

Abstract

Background

Early neurodevelopmental deviations, such as abnormal cortical folding patterns, are candidate biomarkers of major depressive disorder (MDD). We aimed to investigate the association of MDD with the local gyrification index (LGI) in each cortical region at the whole-brain level, and the association of the LGI with clinical characteristics of MDD.

Methods

We obtained T1-weighted images from 234 patients with MDD and 215 healthy controls (HCs). The LGI values from 66 cortical regions in the bilateral hemispheres were automatically calculated according to the Desikan–Killiany atlas. We compared the LGI values between the MDD and HC groups using analysis of covariance, including age, sex, and years of education as covariates. The association between the clinical characteristics and LGI values was investigated in the MDD group.

Results

Compared with HCs, patients with MDD showed significantly decreased LGI values in the cortical regions, including the bilateral ventrolateral and dorsolateral prefrontal cortices, medial and lateral orbitofrontal cortices, insula, right rostral anterior cingulate cortex, and several temporal and parietal regions, with the largest effect size in the left pars triangularis (Cohen's f2 = 0.361; p = 1.78 × 10−13). Regarding the association of clinical characteristics with LGIs within the MDD group, recurrence and longer illness duration were associated with increased gyrification in several occipital and temporal regions, which showed no significant difference in LGIs between the MDD and HC groups.

Conclusions

These findings suggest that the LGI may be a relatively stable neuroimaging marker associated with MDD predisposition.

Type
Original Article
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdallah, C. G., Jackowski, A., Sato, J. R., Mao, X., Kang, G., Cheema, R., & Shungu, D. C. (2015). Prefrontal cortical GABA abnormalities are associated with reduced hippocampal volume in major depressive disorder. European Neuropsychopharmacology, 25(8), 10821090. doi: 10.1016/j.euroneuro.2015.04.025CrossRefGoogle ScholarPubMed
Adler, C. M., Levine, A. D., DelBello, M. P., & Strakowski, S. M. (2005). Changes in gray matter volume in patients with bipolar disorder. Biological Psychiatry, 58(2), 151157. doi: 10.1016/j.biopsych.2005.03.022CrossRefGoogle ScholarPubMed
Alexander-Bloch, A. F., Raznahan, A., Vandekar, S. N., Seidlitz, J., Lu, Z., Mathias, S. R., & Glahn, D. C. (2020). Imaging local genetic influences on cortical folding. Proceedings of the National Academy of Sciences of the United States of America, 117(13), 74307436. doi: 10.1073/pnas.1912064117CrossRefGoogle ScholarPubMed
Alexopoulos, G. S., Murphy, C. F., Gunning-Dixon, F. M., Latoussakis, V., Kanellopoulos, D., Klimstra, S., & Hoptman, M. J. (2008). Microstructural white matter abnormalities and remission of geriatric depression. American Journal of Psychiatry, 165(2), 238244. doi: 10.1176/appi.ajp.2007.07050744CrossRefGoogle ScholarPubMed
Ansorge, M. S., Hen, R., & Gingrich, J. A. (2007). Neurodevelopmental origins of depressive disorders. Current Opinion in Pharmacology, 7(1), 817. doi: 10.1016/j.coph.2006.11.006CrossRefGoogle ScholarPubMed
Bernardoni, F., King, J. A., Geisler, D., Birkenstock, J., Tam, F. I., Weidner, K., & Ehrlich, S. (2018). Nutritional status affects cortical folding: Lessons learned from anorexia nervosa. Biological Psychiatry, 84(9), 692701. doi: 10.1016/j.biopsych.2018.05.008CrossRefGoogle ScholarPubMed
Besteher, B., Gaser, C., Spalthoff, R., & Nenadić, I. (2017). Associations between urban upbringing and cortical thickness and gyrification. Journal of Psychiatric Research, 95, 114120. doi: 10.1016/j.jpsychires.2017.08.012CrossRefGoogle ScholarPubMed
Bora, E., Fornito, A., Pantelis, C., & Yücel, M. (2012). Gray matter abnormalities in major depressive disorder: A meta-analysis of voxel based morphometry studies. Journal of Affective Disorders, 138(1–2), 918. doi: 10.1016/j.jad.2011.03.049CrossRefGoogle ScholarPubMed
Bora, E., Fornito, A., Yücel, M., & Pantelis, C. (2010). Voxelwise meta-analysis of gray matter abnormalities in bipolar disorder. Biological Psychiatry, 67(11), 10971105. doi: 10.1016/j.biopsych.2010.01.020CrossRefGoogle ScholarPubMed
Canu, E., Kostić, M., Agosta, F., Munjiza, A., Ferraro, P. M., Pesic, D., & Filippi, M. (2015). Brain structural abnormalities in patients with major depression with or without generalized anxiety disorder comorbidity. Journal of Neurology, 262(5), 12551265. doi: 10.1007/s00415-015-7701-zCrossRefGoogle ScholarPubMed
Carballedo, A., Scheuerecker, J., Meisenzahl, E., Schoepf, V., Bokde, A., Möller, H. J., & Frodl, T. (2011). Functional connectivity of emotional processing in depression. Journal of Affective Disorders, 134(1–3), 272279. doi: 10.1016/j.jad.2011.06.021CrossRefGoogle ScholarPubMed
Chang, C. C., Yu, S. C., McQuoid, D. R., Messer, D. F., Taylor, W. D., Singh, K., & Payne, M. E. (2011). Reduction of dorsolateral prefrontal cortex gray matter in late-life depression. Psychiatry Research, 193(1), 16. doi: 10.1016/j.pscychresns.2011.01.003CrossRefGoogle ScholarPubMed
Chen, C., Liu, Z., Zuo, J., Xi, C., Long, Y., Li, M. D., & Yang, J. (2021). Decreased cortical folding of the fusiform gyrus and its hypoconnectivity with sensorimotor areas in major depressive disorder. Journal of Affective Disorders, 295, 657664. doi: 10.1016/j.jad.2021.08.148CrossRefGoogle ScholarPubMed
Choi, K. W., Han, K. M., Kim, A., Kang, W., Kang, Y., Tae, W. S., & Ham, B. J. (2022). Decreased cortical gyrification in patients with bipolar disorder. Psychological Medicine, 52(12), 22322244. doi: 10.1017/s0033291720004079CrossRefGoogle ScholarPubMed
Crisóstomo, J., Duarte, J. V., Moreno, C., Gomes, L., & Castelo-Branco, M. (2021). A novel morphometric signature of brain alterations in type 2 diabetes: Patterns of changed cortical gyrification. European Journal of Neuroscience, 54(6), 63226333. doi: 10.1111/ejn.15424CrossRefGoogle ScholarPubMed
Dauvermann, M. R., Mukherjee, P., Moorhead, W. T., Stanfield, A. C., Fusar-Poli, P., Lawrie, S. M., & Whalley, H. C. (2012). Relationship between gyrification and functional connectivity of the prefrontal cortex in subjects at high genetic risk of schizophrenia. Current Pharmaceutical Design, 18(4), 434442. doi: 10.2174/138161212799316235CrossRefGoogle ScholarPubMed
Depping, M. S., Thomann, P. A., Wolf, N. D., Vasic, N., Sosic-Vasic, Z., Schmitgen, M. M., & Wolf, R. C. (2018). Common and distinct patterns of abnormal cortical gyrification in major depression and borderline personality disorder. European Neuropsychopharmacology, 28(10), 11151125. doi: 10.1016/j.euroneuro.2018.07.100CrossRefGoogle ScholarPubMed
Desikan, R. S., Ségonne, F., Fischl, B., Quinn, B. T., Dickerson, B. C., Blacker, D., & Killiany, R. J. (2006). An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage, 31(3), 968980. doi: 10.1016/j.neuroimage.2006.01.021CrossRefGoogle ScholarPubMed
Drysdale, A. T., Grosenick, L., Downar, J., Dunlop, K., Mansouri, F., Meng, Y., & Liston, C. (2017). Resting-state connectivity biomarkers define neurophysiological subtypes of depression. Nature Medicine, 23(1), 2838. doi: 10.1038/nm.4246CrossRefGoogle ScholarPubMed
Fonseka, B. A., Jaworska, N., Courtright, A., MacMaster, F. P., & MacQueen, G. M. (2016). Cortical thickness and emotion processing in young adults with mild to moderate depression: A preliminary study. BMC Psychiatry, 16, 38. doi: 10.1186/s12888-016-0750-8CrossRefGoogle ScholarPubMed
Frye, M. A., Watzl, J., Banakar, S., O'Neill, J., Mintz, J., Davanzo, P., & Thomas, M. A. (2007). Increased anterior cingulate/medial prefrontal cortical glutamate and creatine in bipolar depression. Neuropsychopharmacology, 32(12), 24902499. doi: 10.1038/sj.npp.1301387CrossRefGoogle ScholarPubMed
Gałecka, M., Bliźniewska-Kowalska, K., Maes, M., Su, K. P., & Gałecki, P. (2021). Update on the neurodevelopmental theory of depression: Is there any ‘unconscious code’? Pharmacological Reports, 73(2), 346356. doi: 10.1007/s43440-020-00202-2CrossRefGoogle ScholarPubMed
Gałecki, P., & Talarowska, M. (2018). Neurodevelopmental theory of depression. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 80(Pt C), 267272. doi: 10.1016/j.pnpbp.2017.05.023CrossRefGoogle ScholarPubMed
Grieve, S. M., Korgaonkar, M. S., Koslow, S. H., Gordon, E., & Williams, L. M. (2013). Widespread reductions in gray matter volume in depression. NeuroImage: Clinical, 3, 332339. doi: 10.1016/j.nicl.2013.08.016CrossRefGoogle ScholarPubMed
Hamilton, M. (1960). A rating scale for depression. Journal of Neurology, Neurosurgery and Psychiatry, 23(1), 5662. doi: 10.1136/jnnp.23.1.56CrossRefGoogle ScholarPubMed
Han, K. M., Choi, S., Jung, J., Na, K. S., Yoon, H. K., Lee, M. S., & Ham, B. J. (2014). Cortical thickness, cortical and subcortical volume, and white matter integrity in patients with their first episode of major depression. Journal of Affective Disorders, 155, 4248. doi: 10.1016/j.jad.2013.10.021CrossRefGoogle ScholarPubMed
Han, K. M., Won, E., Kang, J., Kim, A., Yoon, H. K., Chang, H. S., & Ham, B. J. (2017a). Local gyrification index in patients with major depressive disorder and its association with tryptophan hydroxylase-2 (TPH2) polymorphism. Human Brain Mapping, 38(3), 12991310. doi: 10.1002/hbm.23455CrossRefGoogle ScholarPubMed
Han, K. M., Won, E., Sim, Y., Kang, J., Han, C., Kim, Y. K., & Ham, B. J. (2017b). Influence of FKBP5 polymorphism and DNA methylation on structural changes of the brain in major depressive disorder. Scientific Reports, 7, 42621. doi: 10.1038/srep42621CrossRefGoogle ScholarPubMed
Hasan, A., McIntosh, A. M., Droese, U. A., Schneider-Axmann, T., Lawrie, S. M., Moorhead, T. W., & Wobrock, T. (2011). Prefrontal cortex gyrification index in twins: An MRI study. European Archives of Psychiatry and Clinical Neuroscience, 261(7), 459465. doi: 10.1007/s00406-011-0198-2CrossRefGoogle ScholarPubMed
Hayasaka, Y., Purgato, M., Magni, L. R., Ogawa, Y., Takeshima, N., Cipriani, A., & Furukawa, T. A. (2015). Dose equivalents of antidepressants: Evidence-based recommendations from randomized controlled trials. Journal of Affective Disorders, 180, 179184. doi: 10.1016/j.jad.2015.03.021CrossRefGoogle ScholarPubMed
Helm, K., Viol, K., Weiger, T. M., Tass, P. A., Grefkes, C., Del Monte, D., & Schiepek, G. (2018). Neuronal connectivity in major depressive disorder: A systematic review. Neuropsychiatric Disease and Treatment, 14, 27152737. doi: 10.2147/ndt.S170989CrossRefGoogle ScholarPubMed
Hooley, J. M., Gruber, S. A., Parker, H. A., Guillaumot, J., Rogowska, J., & Yurgelun-Todd, D. A. (2009). Cortico-limbic response to personally challenging emotional stimuli after complete recovery from depression. Psychiatry Research, 171(2), 106119. doi: 10.1016/j.pscychresns.2008.04.001CrossRefGoogle ScholarPubMed
Hou, L., Zhang, W., Huang, Q., & Zhou, R. (2022). Altered local gyrification index and corresponding resting-state functional connectivity in individuals with high test anxiety. Biological Psychology, 174, 108409. doi: 10.1016/j.biopsycho.2022.108409CrossRefGoogle ScholarPubMed
Kapogiannis, D., Reiter, D. A., Willette, A. A., & Mattson, M. P. (2013). Posteromedial cortex glutamate and GABA predict intrinsic functional connectivity of the default mode network. Neuroimage, 64, 112119. doi: 10.1016/j.neuroimage.2012.09.029CrossRefGoogle ScholarPubMed
Karolewicz, B., Maciag, D., O'Dwyer, G., Stockmeier, C. A., Feyissa, A. M., & Rajkowska, G. (2010). Reduced level of glutamic acid decarboxylase-67 kDa in the prefrontal cortex in major depression. International Journal of Neuropsychopharmacology, 13(4), 411420. doi: 10.1017/s1461145709990587CrossRefGoogle ScholarPubMed
Kelly, P. A., Viding, E., Wallace, G. L., Schaer, M., De Brito, S. A., Robustelli, B., & McCrory, E. J. (2013). Cortical thickness, surface area, and gyrification abnormalities in children exposed to maltreatment: Neural markers of vulnerability? Biological Psychiatry, 74(11), 845852. doi: 10.1016/j.biopsych.2013.06.020CrossRefGoogle ScholarPubMed
Kim, S. Y., An, S. J., Han, J. H., Kang, Y., Bae, E. B., Tae, W. S., & Han, K. M. (2023). Childhood abuse and cortical gray matter volume in patients with major depressive disorder. Psychiatry Research, 319, 114990. doi: 10.1016/j.psychres.2022.114990CrossRefGoogle ScholarPubMed
Kupfer, D. J., Frank, E., & Phillips, M. L. (2012). Major depressive disorder: New clinical, neurobiological, and treatment perspectives. Lancet (London, England), 379(9820), 10451055. doi: 10.1016/s0140-6736(11)60602-8CrossRefGoogle ScholarPubMed
Lai, T., Payne, M. E., Byrum, C. E., Steffens, D. C., & Krishnan, K. R. (2000). Reduction of orbital frontal cortex volume in geriatric depression. Biological Psychiatry, 48(10), 971975. doi: 10.1016/s0006-3223(00)01042-8CrossRefGoogle ScholarPubMed
Lener, M. S., Kundu, P., Wong, E., Dewilde, K. E., Tang, C. Y., Balchandani, P., & Murrough, J. W. (2016). Cortical abnormalities and association with symptom dimensions across the depressive spectrum. Journal of Affective Disorders, 190, 529536. doi: 10.1016/j.jad.2015.10.027CrossRefGoogle ScholarPubMed
Leucht, S., Samara, M., Heres, S., & Davis, J. M. (2016). Dose equivalents for antipsychotic drugs: The DDD method. Schizophrenia Bulletin, 42(Suppl 1), S90S94. doi: 10.1093/schbul/sbv167CrossRefGoogle ScholarPubMed
Li, B. J., Friston, K., Mody, M., Wang, H. N., Lu, H. B., & Hu, D. W. (2018). A brain network model for depression: From symptom understanding to disease intervention. CNS Neuroscience & Therapeutics, 24(11), 10041019. doi: 10.1111/cns.12998CrossRefGoogle ScholarPubMed
Li, L., Ma, N., Li, Z., Tan, L., Liu, J., Gong, G., & Xu, L. (2007). Prefrontal white matter abnormalities in young adult with major depressive disorder: A diffusion tensor imaging study. Brain Research, 1168, 124128. doi: 10.1016/j.brainres.2007.06.094CrossRefGoogle ScholarPubMed
Li, Q., Zhao, Y., Chen, Z., Long, J., Dai, J., Huang, X., & Gong, Q. (2020). Meta-analysis of cortical thickness abnormalities in medication-free patients with major depressive disorder. Neuropsychopharmacology, 45(4), 703712. doi: 10.1038/s41386-019-0563-9CrossRefGoogle ScholarPubMed
Libero, L. E., Schaer, M., Li, D. D., Amaral, D. G., & Nordahl, C. W. (2019). A longitudinal study of local gyrification index in young boys with autism spectrum disorder. Cerebral Cortex, 29(6), 25752587. doi: 10.1093/cercor/bhy126CrossRefGoogle ScholarPubMed
Light, S. N., Heller, A. S., Johnstone, T., Kolden, G. G., Peterson, M. J., Kalin, N. H., & Davidson, R. J. (2011). Reduced right ventrolateral prefrontal cortex activity while inhibiting positive affect is associated with improvement in hedonic capacity after 8 weeks of antidepressant treatment in major depressive disorder. Biological Psychiatry, 70(10), 962968. doi: 10.1016/j.biopsych.2011.06.031CrossRefGoogle ScholarPubMed
Lima-Ojeda, J. M., Rupprecht, R., & Baghai, T. C. (2018). Neurobiology of depression: A neurodevelopmental approach. World Journal of Biological Psychiatry, 19(5), 349359. doi: 10.1080/15622975.2017.1289240CrossRefGoogle ScholarPubMed
Lippard, E. T. C., & Nemeroff, C. B. (2020). The devastating clinical consequences of child abuse and neglect: Increased disease vulnerability and poor treatment response in mood disorders. American Journal of Psychiatry, 177(1), 2036. doi: 10.1176/appi.ajp.2019.19010020CrossRefGoogle ScholarPubMed
Liu, X., Kakeda, S., Watanabe, K., Yoshimura, R., Abe, O., Ide, S., & Korogi, Y. (2015). Relationship between the cortical thickness and serum cortisol levels in drug-naïve, first-episode patients with major depressive disorder: A surface-based morphometric study. Depression and Anxiety, 32(9), 702708. doi: 10.1002/da.22401CrossRefGoogle ScholarPubMed
Llinares-Benadero, C., & Borrell, V. (2019). Deconstructing cortical folding: Genetic, cellular and mechanical determinants. Nature Reviews Neuroscience, 20(3), 161176. doi: 10.1038/s41583-018-0112-2CrossRefGoogle ScholarPubMed
Long, J., Xu, J., Wang, X., Li, J., Rao, S., Wu, H., & Kuang, W. (2020). Altered local gyrification index and corresponding functional connectivity in medication free major depressive disorder. Frontiers in Psychiatry, 11, 585401. doi: 10.3389/fpsyt.2020.585401CrossRefGoogle ScholarPubMed
Malhi, G. S., & Mann, J. J. (2018). Depression. Lancet, 392(10161), 22992312. doi: 10.1016/S0140-6736(18)31948-2. Epub 2018 Nov 2. PMID: 30396512.CrossRefGoogle ScholarPubMed
Martin, J., Asjadi, K., Hubbard, L., Kendall, K., Pardiñas, A. F., Jermy, B., & O'Donovan, M. (2021). Examining sex differences in neurodevelopmental and psychiatric genetic risk in anxiety and depression. PLoS One, 16(9), e0248254. doi: 10.1371/journal.pone.0248254CrossRefGoogle ScholarPubMed
Michael, N., Erfurth, A., & Pfleiderer, B. (2009). Elevated metabolites within dorsolateral prefrontal cortex in rapid cycling bipolar disorder. Psychiatry Research, 172(1), 7881. doi: 10.1016/j.pscychresns.2009.01.002CrossRefGoogle ScholarPubMed
Michael-Titus, A. T., Bains, S., Jeetle, J., & Whelpton, R. (2000). Imipramine and phenelzine decrease glutamate overflow in the prefrontal cortex – a possible mechanism of neuroprotection in major depression? Neuroscience, 100(4), 681684. doi: 10.1016/s0306-4522(00)00390-0CrossRefGoogle ScholarPubMed
Mishra, A., Patni, P., Hegde, S., Aleya, L., & Tewari, D. (2021). Neuroplasticity and environment: A pharmacotherapeutic approach toward preclinical and clinical understanding. Current Opinion in Environmental Science & Health, 19, 100210.CrossRefGoogle Scholar
Moore, G. J., Cortese, B. M., Glitz, D. A., Zajac-Benitez, C., Quiroz, J. A., Uhde, T. W., & Manji, H. K. (2009). A longitudinal study of the effects of lithium treatment on prefrontal and subgenual prefrontal gray matter volume in treatment-responsive bipolar disorder patients. Journal of Clinical Psychiatry, 70(5), 699705. doi: 10.4088/JCP.07m03745CrossRefGoogle ScholarPubMed
Murrough, J. W., Abdallah, C. G., Anticevic, A., Collins, K. A., Geha, P., Averill, L. A., & Charney, D. S. (2016). Reduced global functional connectivity of the medial prefrontal cortex in major depressive disorder. Human Brain Mapping, 37(9), 32143223. doi: 10.1002/hbm.23235CrossRefGoogle ScholarPubMed
Nanda, P., Tandon, N., Mathew, I. T., Giakoumatos, C. I., Abhishekh, H. A., Clementz, B. A., & Keshavan, M. S. (2014). Local gyrification index in probands with psychotic disorders and their first-degree relatives. Biological Psychiatry, 76(6), 447455. doi: 10.1016/j.biopsych.2013.11.018CrossRefGoogle ScholarPubMed
Nenadic, I., Maitra, R., Dietzek, M., Langbein, K., Smesny, S., Sauer, H., & Gaser, C. (2015). Prefrontal gyrification in psychotic bipolar I disorder vs. schizophrenia. Journal of Affective Disorders, 185, 104107. doi: 10.1016/j.jad.2015.06.014CrossRefGoogle ScholarPubMed
Nixon, N. L., Liddle, P. F., Nixon, E., Worwood, G., Liotti, M., & Palaniyappan, L. (2014). Biological vulnerability to depression: Linked structural and functional brain network findings. British Journal of Psychiatry, 204, 283289. doi: 10.1192/bjp.bp.113.129965CrossRefGoogle ScholarPubMed
Otte, C., Gold, S. M., Penninx, B. W., Pariante, C. M., Etkin, A., Fava, M., & Schatzberg, A. F. (2016). Major depressive disorder. Nature Reviews Disease Primers, 2, 16065. doi: 10.1038/nrdp.2016.65CrossRefGoogle ScholarPubMed
Palaniyappan, L., & Liddle, P. F. (2014). Diagnostic discontinuity in psychosis: A combined study of cortical gyrification and functional connectivity. Schizophrenia Bulletin, 40(3), 675684. doi: 10.1093/schbul/sbt050CrossRefGoogle ScholarPubMed
Peng, D., Shi, F., Li, G., Fralick, D., Shen, T., Qiu, M., & Fang, Y. (2015). Surface vulnerability of cerebral cortex to major depressive disorder. PLoS One, 10(3), e0120704. doi: 10.1371/journal.pone.0120704CrossRefGoogle ScholarPubMed
Phillips, M. L., Chase, H. W., Sheline, Y. I., Etkin, A., Almeida, J. R., Deckersbach, T., & Trivedi, M. H. (2015). Identifying predictors, moderators, and mediators of antidepressant response in major depressive disorder: Neuroimaging approaches. American Journal of Psychiatry, 172(2), 124138. doi: 10.1176/appi.ajp.2014.14010076CrossRefGoogle ScholarPubMed
Richman, D. P., Stewart, R. M., Hutchinson, J. W., & Caviness, V. S. Jr. (1975). Mechanical model of brain convolutional development. Science (New York, N.Y.), 189(4196), 1821. doi: 10.1126/science.1135626CrossRefGoogle ScholarPubMed
Rive, M. M., van Rooijen, G., Veltman, D. J., Phillips, M. L., Schene, A. H., & Ruhé, H. G. (2013). Neural correlates of dysfunctional emotion regulation in major depressive disorder. A systematic review of neuroimaging studies. Neuroscience & Biobehavioral Reviews, 37(10 Pt 2), 25292553. doi: 10.1016/j.neubiorev.2013.07.018CrossRefGoogle ScholarPubMed
Rogers, J., Kochunov, P., Zilles, K., Shelledy, W., Lancaster, J., Thompson, P., & Glahn, D. C. (2010). On the genetic architecture of cortical folding and brain volume in primates. Neuroimage, 53(3), 11031108. doi: 10.1016/j.neuroimage.2010.02.020CrossRefGoogle ScholarPubMed
Salvadore, G., Nugent, A. C., Lemaitre, H., Luckenbaugh, D. A., Tinsley, R., Cannon, D. M., & Drevets, W. C. (2011). Prefrontal cortical abnormalities in currently depressed versus currently remitted patients with major depressive disorder. Neuroimage, 54(4), 26432651. doi: 10.1016/j.neuroimage.2010.11.011CrossRefGoogle ScholarPubMed
Schlösser, R. G., Wagner, G., Koch, K., Dahnke, R., Reichenbach, J. R., & Sauer, H. (2008). Fronto-cingulate effective connectivity in major depression: A study with fMRI and dynamic causal modeling. Neuroimage, 43(3), 645655. doi: 10.1016/j.neuroimage.2008.08.002CrossRefGoogle ScholarPubMed
Schmaal, L., Hibar, D. P., Sämann, P. G., Hall, G. B., Baune, B. T., Jahanshad, N., & Veltman, D. J. (2017). Cortical abnormalities in adults and adolescents with major depression based on brain scans from 20 cohorts worldwide in the ENIGMA major depressive disorder working group. Molecular Psychiatry, 22(6), 900909. doi: 10.1038/mp.2016.60CrossRefGoogle ScholarPubMed
Schmaal, L., Veltman, D. J., van Erp, T. G., Sämann, P. G., Frodl, T., Jahanshad, N., & Hibar, D. P. (2016). Subcortical brain alterations in major depressive disorder: Findings from the ENIGMA major depressive disorder working group. Molecular Psychiatry, 21(6), 806812. doi: 10.1038/mp.2015.69CrossRefGoogle ScholarPubMed
Schmitgen, M. M., Depping, M. S., Bach, C., Wolf, N. D., Kubera, K. M., Vasic, N., & Wolf, R. C. (2019). Aberrant cortical neurodevelopment in major depressive disorder. Journal of Affective Disorders, 243, 340347. doi: 10.1016/j.jad.2018.09.021CrossRefGoogle ScholarPubMed
Shirayama, Y., Takahashi, M., Osone, F., Hara, A., & Okubo, T. (2017). Myo-inositol, glutamate, and glutamine in the prefrontal cortex, hippocampus, and amygdala in major depression. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2(2), 196204. doi: 10.1016/j.bpsc.2016.11.006Google ScholarPubMed
Striedter, G. F., Srinivasan, S., & Monuki, E. S. (2015). Cortical folding: When, where, how, and why? Annual Review of Neuroscience, 38, 291307. doi: 10.1146/annurev-neuro-071714-034128CrossRefGoogle ScholarPubMed
Suh, J. S., Schneider, M. A., Minuzzi, L., MacQueen, G. M., Strother, S. C., Kennedy, S. H., & Frey, B. N. (2019). Cortical thickness in major depressive disorder: A systematic review and meta-analysis. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 88, 287302. doi: 10.1016/j.pnpbp.2018.08.008CrossRefGoogle ScholarPubMed
Thomson, P. A., Duff, B., Blackwood, D. H., Romaniuk, L., Watson, A., Whalley, H. C., & Lawrie, S. M. (2016). Balanced translocation linked to psychiatric disorder, glutamate, and cortical structure/function. NPJ Schizophrenia, 2, 16024. doi: 10.1038/npjschz.2016.24CrossRefGoogle ScholarPubMed
van der Meer, D., Kaufmann, T., Shadrin, A. A., Makowski, C., Frei, O., Roelfs, D., & Dale, A. M. (2021). The genetic architecture of human cortical folding. Science Advances, 7(51), eabj9446. doi: 10.1126/sciadv.abj9446CrossRefGoogle ScholarPubMed
Van Essen, D. C. (1997). A tension-based theory of morphogenesis and compact wiring in the central nervous system. Nature, 385(6614), 313318. doi: 10.1038/385313a0CrossRefGoogle ScholarPubMed
Wang, L., Zhao, Y., Edmiston, E. K., Womer, F. Y., Zhang, R., Zhao, P., & Wei, S. (2019). Structural and functional abnormities of amygdala and prefrontal cortex in major depressive disorder with suicide attempts. Frontiers in Psychiatry, 10, 923. doi: 10.3389/fpsyt.2019.00923CrossRefGoogle ScholarPubMed
Wang, Y., Zhang, Y., Zhang, J., Wang, J., Xu, J., Li, J., & Zhang, J. (2018). Structural and functional abnormalities of the insular cortex in trigeminal neuralgia: A multimodal magnetic resonance imaging analysis. Pain, 159(3), 507514. doi: 10.1097/j.pain.0000000000001120CrossRefGoogle ScholarPubMed
White, T., Su, S., Schmidt, M., Kao, C. Y., & Sapiro, G. (2010). The development of gyrification in childhood and adolescence. Brain and Cognition, 72(1), 3645. doi: 10.1016/j.bandc.2009.10.009CrossRefGoogle ScholarPubMed
Williams, L. M. (2016). Precision psychiatry: A neural circuit taxonomy for depression and anxiety. The Lancet. Psychiatry, 3(5), 472480. doi: 10.1016/s2215-0366(15)00579-9CrossRefGoogle ScholarPubMed
Ye, T., Peng, J., Nie, B., Gao, J., Liu, J., Li, Y., & Shan, B. (2012). Altered functional connectivity of the dorsolateral prefrontal cortex in first-episode patients with major depressive disorder. European Journal of Radiology, 81(12), 40354040. doi: 10.1016/j.ejrad.2011.04.058CrossRefGoogle ScholarPubMed
Yuan, Y., Zhang, Z., Bai, F., Yu, H., Shi, Y., Qian, Y., & You, J. (2007). White matter integrity of the whole brain is disrupted in first-episode remitted geriatric depression. Neuroreport, 18(17), 18451849. doi: 10.1097/WNR.0b013e3282f1939fCrossRefGoogle ScholarPubMed
Zhang, R., Wei, S., Chang, M., Jiang, X., Tang, Y., & Wang, F. (2020). Dorsolateral and ventrolateral prefrontal cortex structural changes relative to suicidal ideation in patients with depression. Acta Neuropsychiatrica, 32(2), 8491. doi: 10.1017/neu.2019.45CrossRefGoogle ScholarPubMed
Zhang, Y., Yu, C., Zhou, Y., Li, K., Li, C., & Jiang, T. (2009). Decreased gyrification in major depressive disorder. Neuroreport, 20(4), 378380. doi: 10.1097/WNR.0b013e3283249b34CrossRefGoogle ScholarPubMed
Zhao, Y. J., Du, M. Y., Huang, X. Q., Lui, S., Chen, Z. Q., Liu, J., & Gong, Q. Y. (2014). Brain grey matter abnormalities in medication-free patients with major depressive disorder: A meta-analysis. Psychological Medicine, 44(14), 29272937. doi: 10.1017/s0033291714000518CrossRefGoogle ScholarPubMed
Zilles, K., Palomero-Gallagher, N., & Amunts, K. (2013). Development of cortical folding during evolution and ontogeny. Trends in Neurosciences, 36(5), 275284. doi: 10.1016/j.tins.2013.01.006CrossRefGoogle ScholarPubMed
Supplementary material: File

Kang et al. supplementary material

Kang et al. supplementary material
Download Kang et al. supplementary material(File)
File 405.6 KB