Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-10T09:32:33.380Z Has data issue: false hasContentIssue false

Effect of the NMDA receptor partial agonist, d-cycloserine, on emotional processing and autobiographical memory

Published online by Cambridge University Press:  07 May 2020

Runsen Chen
Affiliation:
University Department of Psychiatry, Warneford Hospital, University of Oxford, OX3 7JX, UK Oxford Health NHS Foundation Trust, Warneford Hospital, University of Oxford, Oxford, UK
Liliana P. Capitão
Affiliation:
University Department of Psychiatry, Warneford Hospital, University of Oxford, OX3 7JX, UK Oxford Health NHS Foundation Trust, Warneford Hospital, University of Oxford, Oxford, UK
Philip J. Cowen
Affiliation:
University Department of Psychiatry, Warneford Hospital, University of Oxford, OX3 7JX, UK Oxford Health NHS Foundation Trust, Warneford Hospital, University of Oxford, Oxford, UK
Catherine J. Harmer*
Affiliation:
University Department of Psychiatry, Warneford Hospital, University of Oxford, OX3 7JX, UK Oxford Health NHS Foundation Trust, Warneford Hospital, University of Oxford, Oxford, UK
*
Author for correspondence: Catherine J. Harmer, E-mail: catherine.harmer@psych.ox.ac.uk

Abstract

Background

Studies suggest that d-cycloserine (DCS) may have antidepressant potential through its interaction with the glycine site of the N-methyl-D-aspartate receptor; however, clinical evidence of DCS's efficacy as a treatment for depression is limited. Other evidence suggests that DCS affects emotional learning which may also be relevant for the treatment of depression and anxiety. The aim of the present investigation was to assess the effect of DCS on emotional processing in healthy volunteers and to further characterise its effects on emotional and autobiographical memory.

Methods

Forty healthy volunteers were randomly allocated to a single dose of 250 mg DCS or placebo in a double-blind design. Three hours later, participants performed an Emotional Test Battery [including Facial Expression Recognition Task (FERT), Emotional Categorisation Task (ECAT), Emotional Recall Task (EREC), Facial Dot-Probe Task (FDOT) and Emotional Recognition Memory Task (EMEM)] and an Autobiographical Memory Test (AMT). Also, participants performed the FERT, EREC and AMT tasks again after 24 h in order to assess longer lasting effects of a single dose of DCS.

Results

DCS did not significantly affect the FERT, EMEM and FDOT performance but significantly increased emotional memory and classification for positive words v. negative words. Also, DCS enhanced the retrieval of more specific autobiographical memories, and this effect persisted at 24 h.

Conclusions

These findings support the suggestion that low-dose DCS increases specific autobiographical memory retrieval and positive emotional memory. Such effects make it an intriguing agent for further investigation in clinical depression, which is characterised by decreased autobiographical memory specificity and increased negative bias in memory recall. It also underscores the potential role of DCS as an adjunct to cognitive behavioural therapy in depression.

Type
Original Article
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arnone, D., Horder, J., Cowen, P., & Harmer, C. (2009). Early effects of mirtazapine on emotional processing. Psychopharmacology, 203(4), 685.CrossRefGoogle ScholarPubMed
Baddeley, A., Emslie, H., & Nimmo-Smith, I. (1993). The Spot-the-Word test: A robust estimate of verbal intelligence based on lexical decision. British Journal of Clinical Psychology, 32(1), 5565.CrossRefGoogle ScholarPubMed
Beck, A. T., Ward, C. H., Mendelson, M., Mock, J., & Erbaugh, J. (1961). An inventory for measuring depression. Archives of General Psychiatry, 4(6), 561571.CrossRefGoogle ScholarPubMed
Becker, B., Steffens, M., Zhao, Z., Kendrick, K. M., Neumann, C., Weber, B., … Hurlemann, R. (2017). General and emotion-specific neural effects of ketamine during emotional memory formation. Neuroimage, 150, 308317.CrossRefGoogle ScholarPubMed
Browning, M., Reid, C., Cowen, P., Goodwin, G., & Harmer, C. (2007). A single dose of citalopram increases fear recognition in healthy subjects. Journal of Psychopharmacology, 21(7), 684690.CrossRefGoogle ScholarPubMed
Carvalho, A. F., Köhler, C. A., Cruz, E. P., Stürmer, P. L., Reichman, B. P., Barea, B. M., … Chaves, M. L. (2006). Acute treatment with the antidepressants bupropion and sertraline do not influence memory retrieval in man. European Archives of Psychiatry and Clinical Neuroscience, 256(5), 320325.CrossRefGoogle Scholar
Eysenck, H. J., & Eysenck, S. B. G. (1975). Manual of the Eysenck Personality Questionnaire (junior and adult). San Diego, USA: Hodder and Stoughton.Google Scholar
Flood, J. F., Morley, J. E., & Lanthorn, T. H. (1992). Effect on memory processing by D-cycloserine, an agonist of the NMDA/glycine receptor. European Journal of Pharmacology, 221(2–3), 249254.CrossRefGoogle ScholarPubMed
Goff, D. C. (2012). D-cycloserine: An evolving role in learning and neuroplasticity in schizophrenia. Schizophrenia Bulletin, 38(5), 936941.CrossRefGoogle Scholar
Grunebaum, M. F., Keilp, J., Li, S., Ellis, S. P., Burke, A. K., Oquendo, M. A., & Mann, J. J. (2005). Symptom components of standard depression scales and past suicidal behavior. Journal of Affective Disorders, 87(1), 7382.CrossRefGoogle ScholarPubMed
Haddad, A. D., Williams, J. M. G., McTavish, S. F., & Harmer, C. J. (2009). Low-dose tryptophan depletion in recovered depressed women induces impairments in autobiographical memory specificity. Psychopharmacology, 207(3), 499508.CrossRefGoogle ScholarPubMed
Harmer, C. J. (2010). Antidepressant drug action: A neuropsychological perspective. Depression and Anxiety, 27(3), 231233.CrossRefGoogle ScholarPubMed
Harmer, C., Bhagwagar, Z., Perrett, D., Völlm, B., Cowen, P., & Goodwin, G. (2003a). Acute SSRI administration affects the processing of social cues in healthy volunteers. Neuropsychopharmacology, 28(1), 148.CrossRefGoogle Scholar
Harmer, C. J., Cowen, P. J., & Goodwin, G. M. (2011). Efficacy markers in depression. Journal of Psychopharmacology, 25(9), 11481158. doi: 10.1177/0269881110367722.CrossRefGoogle ScholarPubMed
Harmer, C. J., Goodwin, G. M., & Cowen, P. J. (2009). Why do antidepressants take so long to work? A cognitive neuropsychological model of antidepressant drug action. The British Journal of Psychiatry, 195(2), 102108.CrossRefGoogle Scholar
Harmer, C. J., Hill, S. A., Taylor, M. J., Cowen, P. J., & Goodwin, G. M. (2003b). Toward a neuropsychological theory of antidepressant drug action: Increase in positive emotional bias after potentiation of norepinephrine activity. American Journal of Psychiatry, 160(5), 990992. doi: 10.1176/appi.ajp.160.5.990.CrossRefGoogle Scholar
Harmer, C. J., Shelley, N. C., Cowen, P. J., & Goodwin, G. M. (2004). Increased positive versus negative affective perception and memory in healthy volunteers following selective serotonin and norepinephrine reuptake inhibition. American Journal of Psychiatry, 161(7), 12561263. doi: 10.1176/appi.ajp.161.7.1256.CrossRefGoogle ScholarPubMed
Harmer D Phil, C. J., O'Sullivan, U., Favaron, E., Massey-Chase, R., Ayres, R., Reinecke, A., … Cowen, P. J. (2009). Effect of acute antidepressant administration on negative affective bias in depressed patients. American Journal of Psychiatry, 166(10), 11781184.CrossRefGoogle Scholar
Heresco-Levy, U., Gelfin, G., Bloch, B., Levin, R., Edelman, S., Javitt, D. C., & Kremer, I. (2013). A randomized add-on trial of high-dose D-cycloserine for treatment-resistant depression. International Journal of Neuropsychopharmacology, 16(3), 501506.CrossRefGoogle ScholarPubMed
Heresco-Levy, U., Javitt, D. C., Gelfin, Y., Gorelik, E., Bar, M., Blanaru, M., & Kremer, I. (2006). Controlled trial of D-cycloserine adjuvant therapy for treatment-resistant major depressive disorder. Journal of Affective Disorders, 93(1–3), 239243.CrossRefGoogle ScholarPubMed
Hermans, D., Defranc, A., Raes, F., Williams, J. M. G., & Eelen, P. (2005). Reduced autobiographical memory specificity as an avoidant coping style. British Journal of Clinical Psychology, 44(4), 583589.CrossRefGoogle ScholarPubMed
Kantrowitz, J. T., Halberstam, B., & Gangwisch, J. (2015). Single-dose ketamine followed by daily d-cycloserine in treatment-resistant bipolar depression. The Journal of Clinical Psychiatry, 76(6), 737738.CrossRefGoogle ScholarPubMed
Kent, J. M., Coplan, J. D., & Gorman, J. M. (1998). Clinical utility of the selective serotonin reuptake inhibitors in the spectrum of anxiety. Biological Psychiatry, 44(9), 812824.CrossRefGoogle ScholarPubMed
Kim, S. W., Kushner, M. G., Yoon, G., Anker, J., & Grant, J. E. (2016). Low-dose d-cycloserine for depression? Journal of Clinical Psychiatry, 77(8), e1007.CrossRefGoogle ScholarPubMed
Köhler, C. A., Carvalho, A. F., Alves, G. S., McIntyre, R. S., Hyphantis, T. N., & Cammarota, M. (2015). Autobiographical memory disturbances in depression: A novel therapeutic target? Neural Plasticity, 2015, 759139. https://www.hindawi.com/journals/np/2015/759139/.CrossRefGoogle ScholarPubMed
Krystal, J. H., Petrakis, I. L., Limoncelli, D., Nappi, S. K., Trevisan, L., Pittman, B., & D'souza, D. C. (2011). Characterization of the interactive effects of glycine and D-cycloserine in men: Further evidence for enhanced NMDA receptor function associated with human alcohol dependence. Neuropsychopharmacology, 36(3), 701.CrossRefGoogle ScholarPubMed
Lanthorn, T. (1994). D-cycloserine: Agonist turned antagonist. Amino Acids, 6(3), 247260.CrossRefGoogle ScholarPubMed
Mataix-Cols, D., De La Cruz, L. F., Monzani, B., Rosenfield, D., Andersson, E., Pérez-Vigil, A., … Dunlop, B. W. (2017). D-cycloserine augmentation of exposure-based cognitive behavior therapy for anxiety, obsessive-compulsive, and posttraumatic stress disorders: A systematic review and meta-analysis of individual participant data. Jama Psychiatry, 74(5), 501510.CrossRefGoogle ScholarPubMed
McBride, C., Segal, Z., Kennedy, S., & Gemar, M. (2007). Changes in autobiographical memory specificity following cognitive behavior therapy and pharmacotherapy for major depression. Psychopathology, 40(3), 147152. doi: 10.1159/000100003.CrossRefGoogle ScholarPubMed
Morgan, C. J., Mofeez, A., Brandner, B., Bromley, L., & Curran, H. V. (2004). Acute effects of ketamine on memory systems and psychotic symptoms in healthy volunteers. Neuropsychopharmacology, 29(1), 208.CrossRefGoogle ScholarPubMed
Neshat-Doost, H. T., Dalgleish, T., Yule, W., Kalantari, M., Ahmadi, S. J., Dyregrov, A., & Jobson, L. (2013). Enhancing autobiographical memory specificity through cognitive training: An intervention for depression translated from basic science. Clinical Psychological Science, 1(1), 8492.CrossRefGoogle Scholar
Newport, D. J., Carpenter, L. L., McDonald, W. M., Potash, J. B., Tohen, M., & Nemeroff, C. B., … Treatments. (2015). Ketamine and other NMDA antagonists: Early clinical trials and possible mechanisms in depression. American Journal of Psychiatry, 172(10), 950966.CrossRefGoogle ScholarPubMed
Northoff, G. (2007). Psychopathology and pathophysiology of the self in depression – neuropsychiatric hypothesis. Journal of Affective Disorders, 104(1–3), 114.CrossRefGoogle ScholarPubMed
Otto, M. W., Basden, S. L., Leyro, T. M., McHugh, R. K., & Hofmann, S. G. (2007). Clinical perspectives on the combination of D-cycloserine and cognitive-behavioral therapy for the treatment of anxiety disorders. CNS Spectrums, 12(1), 5161.CrossRefGoogle ScholarPubMed
Otto, M. W., Tolin, D. F., Simon, N. M., Pearlson, G. D., Basden, S., Meunier, S. A., … Pollack, M. H. (2010). Efficacy of d-cycloserine for enhancing response to cognitive-behavior therapy for panic disorder. Biological Psychiatry, 67(4), 365370.CrossRefGoogle ScholarPubMed
Parnas, A. S., Weber, M., & Richardson, R. (2005). Effects of multiple exposures to D-cycloserine on extinction of conditioned fear in rats. Neurobiology of Learning and Memory, 83(3), 224231.CrossRefGoogle ScholarPubMed
Patel, D. S., Sharma, N., Patel, M. C., Patel, B. N., Shrivastav, P. S., & Sanyal, M. (2011). Development and validation of a selective and sensitive LC–MS/MS method for determination of cycloserine in human plasma: Application to bioequivalence study. Journal of Chromatography B, 879(23), 22652273.CrossRefGoogle ScholarPubMed
Quartermain, D., Mower, J., Rafferty, M. F., Herting, R. L., & Lanthorn, T. H. (1994). Acute but not chronic activation of the NMDA-coupled glycine receptor with D-cycloserine facilitates learning and retention. European Journal of Pharmacology, 257(1–2), 712.CrossRefGoogle Scholar
Radford, K. D., Park, T. Y., Jaiswal, S., Pan, H., Knutsen, A., Zhang, M., … Choi, K. H. (2018). Enhanced fear memories and brain glucose metabolism (18 F-FDG-PET) following sub-anesthetic intravenous ketamine infusion in Sprague-Dawley rats. Translational Psychiatry, 8(1), 263.CrossRefGoogle Scholar
Raes, F., Williams, J. M. G., & Hermans, D. (2009). Reducing cognitive vulnerability to depression: A preliminary investigation of MEmory Specificity Training (MEST) in inpatients with depressive symptomatology. Journal of Behavior Therapy and Experimental Psychiatry, 40(1), 2438.CrossRefGoogle ScholarPubMed
Reinecke, A., Nickless, A., Browning, M., & Harmer, C. J. (2018). A randomized double-blind trial of D-cycloserine augmented single-session exposure therapy for anxiety: Neurocognitive mechanisms. Available at SSRN, 3253314.CrossRefGoogle Scholar
Rezvani, A. H.. (2006). Involvement of the NMDA system in learning and memory. In Levin, E. D., & Buccafusco, J. J. (Eds.), Animal Models of Cognitive Impairment. Frontiers in Neuroscience (pp. 3748). Boca Raton: Taylor & Francis.CrossRefGoogle ScholarPubMed
Richardson, R., Ledgerwood, L., & Cranney, J. (2004). Facilitation of fear extinction by D-cycloserine: Theoretical and clinical implications. Learning & Memory (Cold Spring Harbor, N.Y.), 11(5), 510516. doi: 10.1101/lm.78204.CrossRefGoogle ScholarPubMed
Roesler, R., Quevedo, J., Walz, R., Dal Pizzol, F., & Kapczinski, F. (1998). Drugs acting at the glycine site on the NMDA receptor as cognitive enhancers in patients with Alzheimer's disease. Neurology, 50(4), 11951195.CrossRefGoogle Scholar
Santini, E., Muller, R. U., & Quirk, G. J. (2001). Consolidation of extinction learning involves transfer from NMDA-independent to NMDA-dependent memory. Journal of Neuroscience, 21(22), 90099017.CrossRefGoogle ScholarPubMed
Schade, S., & Paulus, W. (2016). D-Cycloserine in neuropsychiatric diseases: A systematic review. International Journal of Neuropsychopharmacology, 19, 4.CrossRefGoogle ScholarPubMed
Scholl, J., Günthner, J., Kolling, N., Favaron, E., Rushworth, M. F., Harmer, C. J., & Reinecke, A. (2014). A role beyond learning for NMDA receptors in reward-based decision-making – a pharmacological study using d-cycloserine. Neuropsychopharmacology, 39(12), 2900.CrossRefGoogle ScholarPubMed
Schwartz, B., Hashtroudi, S., Herting, R., Handerson, H., & Deutsch, S. (1991). Glycine prodrug facilitates memory retrieval in humans. Neurology, 41(9), 13411341.CrossRefGoogle ScholarPubMed
Segal, Z. V., & Gemar, M. (1997). Changes in cognitive organisation for negative self-referent material following cognitive behaviour therapy for depression: A primed Stroop study. Cognition & Emotion, 11(5–6), 501516.CrossRefGoogle Scholar
Shapiro, M. L., & Caramanos, Z. (1990). NMDA antagonist MK-801 impairs acquisition but not performance of spatial working and reference memory. Psychobiology, 18(2), 231243.Google Scholar
Speilberger, C., Gorsuch, R., & Lushene, R. (1970). STAI manual. Palo Alto, CA: Consulting Psychologist Press.Google Scholar
Spielberger, C. D., & Gorsuch, R. L. (1983). State-trait anxiety inventory for adults: Sampler set: Manual, test, scoring key. Washington, USA: Mind Garden.Google Scholar
Stuart, S. A., Butler, P., Munafò, M. R., Nutt, D. J., & Robinson, E. S. (2015). Distinct neuropsychological mechanisms may explain delayed-versus rapid-onset antidepressant efficacy. Neuropsychopharmacology, 40(9), 2165.CrossRefGoogle ScholarPubMed
Tarrier, N. (2010). Broad minded affective coping (BMAC): A ‘positive’ CBT approach to facilitating positive emotions. International Journal of Cognitive Therapy, 3(1), 6476.CrossRefGoogle Scholar
Thomas, J. M., Higgs, S., & Dourish, C. T. (2016). Test–retest reliability and effects of repeated testing and satiety on performance of an Emotional Test Battery. Journal of Clinical and Experimental Neuropsychology, 38(4), 416433.CrossRefGoogle ScholarPubMed
Von Zerssen, D., & Bf-SR, P. F. (2011). The Befindlichkeits scale–revised. Göttingen: Hogrefe.Google Scholar
Walsh, A., Huneke, N., Brown, R., Browning, M., Cowen, P., & Harmer, C. (2018). A dissociation of the acute effects of bupropion on positive emotional processing and reward processing in healthy volunteers. Frontiers in Psychiatry, 9, 482.CrossRefGoogle ScholarPubMed
Warren, M. B., Cowen, P. J., & Harmer, C. J. (2019). Subchronic treatment with St John's wort produces a positive shift in emotional processing in healthy volunteers. Journal of Psychopharmacology, 33(2), 194201.CrossRefGoogle ScholarPubMed
Watson, D., Clark, L. A., & Tellegen, A. (1988). Development and validation of brief measures of positive and negative affect: The PANAS scales. Journal of Personality and Social Psychology, 54(6), 1063.CrossRefGoogle ScholarPubMed
Wilhelm, S., Buhlmann, U., Tolin, D. F., Meunier, S. A., Pearlson, G. D., Reese, H. E., … Rauch, S. L. (2008). Augmentation of behavior therapy with D-cycloserine for obsessive-compulsive disorder. American Journal of Psychiatry, 165(3), 335341.CrossRefGoogle ScholarPubMed
Williams, J. M., & Broadbent, K. (1986). Autobiographical memory in suicide attempters. Journal of Abnormal Psychology, 95(2), 144.CrossRefGoogle ScholarPubMed
Williams, J. M. G., Ellis, N. C., Tyers, C., Healy, H., Rose, G., & Macleod, A. K. (1996). The specificity of autobiographical memory and imageability of the future. Memory & Cognition, 24(1), 116125.CrossRefGoogle Scholar
Young, K. D., Drevets, W. C., Dantzer, R., Teague, T. K., Bodurka, J., & Savitz, J. (2016). Kynurenine pathway metabolites are associated with hippocampal activity during autobiographical memory recall in patients with depression. Brain, Behavior, and Immunity, 56, 335342.CrossRefGoogle ScholarPubMed
Zhang, M. W., & Ho, R. (2016). Controversies of the effect of ketamine on cognition. Frontiers in Psychiatry, 7, 47.CrossRefGoogle ScholarPubMed
Supplementary material: File

Chen et al. supplementary material

Chen et al. supplementary material 1

Download Chen et al. supplementary material(File)
File 223.7 KB
Supplementary material: File

Chen et al. supplementary material

Chen et al. supplementary material 2

Download Chen et al. supplementary material(File)
File 32.3 KB