Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-27T22:55:56.386Z Has data issue: false hasContentIssue false

Failure of deactivation in the default mode network: a trait marker for schizophrenia?

Published online by Cambridge University Press:  21 October 2014

R. Landin-Romero
Affiliation:
FIDMAG Germanes Hospitalàries, Barcelona, Spain Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
P. J. McKenna*
Affiliation:
FIDMAG Germanes Hospitalàries, Barcelona, Spain Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain Benito Menni Complex Assistencial en Salut Mental, Barcelona, Spain
P. Salgado-Pineda
Affiliation:
FIDMAG Germanes Hospitalàries, Barcelona, Spain Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
S. Sarró
Affiliation:
FIDMAG Germanes Hospitalàries, Barcelona, Spain Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
C. Aguirre
Affiliation:
FIDMAG Germanes Hospitalàries, Barcelona, Spain Benito Menni Complex Assistencial en Salut Mental, Barcelona, Spain
C. Sarri
Affiliation:
FIDMAG Germanes Hospitalàries, Barcelona, Spain Benito Menni Complex Assistencial en Salut Mental, Barcelona, Spain
A. Compte
Affiliation:
FIDMAG Germanes Hospitalàries, Barcelona, Spain Benito Menni Complex Assistencial en Salut Mental, Barcelona, Spain
C. Bosque
Affiliation:
FIDMAG Germanes Hospitalàries, Barcelona, Spain Benito Menni Complex Assistencial en Salut Mental, Barcelona, Spain
J. Blanch
Affiliation:
Hospital Sant Joan de Déu Infantil, Barcelona, Spain
R. Salvador
Affiliation:
FIDMAG Germanes Hospitalàries, Barcelona, Spain Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
E. Pomarol-Clotet
Affiliation:
FIDMAG Germanes Hospitalàries, Barcelona, Spain Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
*
*Address for correspondence: P. J. McKenna, FIDMAG, Germanes Hospitalàries, Benito Menni CASM, C/. Dr Antoni Pujadas 38, 08830 Sant Boi de Llobregat, Barcelona, Spain. (Email: mckennapeter1@gmail.com)

Abstract

Background.

Functional imaging studies in relatives of schizophrenic patients have had inconsistent findings, particularly with respect to altered dorsolateral prefrontal cortex activation. Some recent studies have also suggested that failure of deactivation may be seen.

Method.

A total of 28 patients with schizophrenia, 28 of their siblings and 56 healthy controls underwent functional magnetic resonance imaging during performance of the n-back working memory task. An analysis of variance was fitted to individual whole-brain maps from each set of patient–relative–matched pair of controls. Clusters of significant difference among the groups were then used as regions of interest to compare mean activations and deactivations among the groups.

Results.

In all, five clusters of significant differences were found. The schizophrenic patients, but not the relatives, showed reduced activation compared with the controls in the lateral frontal cortex bilaterally, the left basal ganglia and the cerebellum. In contrast, both the patients and the relatives showed significant failure of deactivation compared with the healthy controls in the medial frontal cortex, with the relatives also showing less failure than the patients. Failure of deactivation was not associated with schizotypy scores or presence of psychotic-like experiences in the relatives.

Conclusions.

Both schizophrenic patients and their relatives show altered task-related deactivation in the medial frontal cortex. This in turn suggests that default mode network dysfunction may function as a trait marker for schizophrenia.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, AJ, Griss, ME, Folley, BS, Hawkins, KA, Pearlson, GD (2009). Endophenotypes in schizophrenia: a selective review. Schizophrenia Research 109, 2437.Google Scholar
Allin, MP, Marshall, N, Schulze, K, Walshe, M, Hall, MH, Picchioni, M, Murray, RM, McDonald, C (2010). A functional MRI study of verbal fluency in adults with bipolar disorder and their unaffected relatives. Psychological Medicine 40, 20252035.Google Scholar
Anticevic, A, Cole, MW, Murray, JD, Corlett, PR, Wang, XJ, Krystal, JH (2012). The role of default network deactivation in cognition and disease. Trends in Cognitive Sciences 16, 584592.CrossRefGoogle ScholarPubMed
Anticevic, A, Repovs, G, Barch, DM (2013). Working memory encoding and maintenance deficits in schizophrenia: neural evidence for activation and deactivation abnormalities. Schizophrenia Bulletin 39, 168178.Google Scholar
Benjamini, Y, Yekutieli, D (2001). The control of the false discovery rate in multiple testing under dependency. Annals of Statistics 29, 11651188.Google Scholar
Bluhm, RL, Miller, J, Lanius, RA, Osuch, EA, Boksman, K, Neufeld, RW, Theberge, J, Schaefer, B, Williamson, P (2007). Spontaneous low-frequency fluctuations in the BOLD signal in schizophrenic patients: anomalies in the default network. Schizophrenia Bulletin 33, 10041012.Google Scholar
Broyd, SJ, Demanuele, C, Debener, S, Helps, SK, James, CJ, Sonuga-Barke, EJ (2009). Default-mode brain dysfunction in mental disorders: a systematic review. Neuroscience and Biobehavioral Reviews 33, 279296.Google Scholar
Buckner, RL, Andrews-Hanna, JR, Schacter, DL (2008). The brain's default network: anatomy, function, and relevance to disease. Annals of the New York Academy of Sciences 1124, 138.CrossRefGoogle ScholarPubMed
Camchong, J, MacDonald, AW 3rd, Bell, C, Mueller, BA, Lim, KO (2011). Altered functional and anatomical connectivity in schizophrenia. Schizophrenia Bulletin 37, 640650.Google Scholar
Choi, JS, Park, JY, Jung, MH, Jang, JH, Kang, DH, Jung, WH, Han, JY, Choi, CH, Hong, KS, Kwon, JS (2012). Phase-specific brain change of spatial working memory processing in genetic and ultra-high risk groups of schizophrenia. Schizophrenia Bulletin 38, 11891199.Google Scholar
Collins, AL, Sullivan, PF (2013). Genome-wide association studies in psychiatry: what have we learned? British Journal of Psychiatry 202, 14.Google Scholar
Craddock, N, Owen, MJ (2005). The beginning of the end for the Kraepelinian dichotomy. British Journal of Psychiatry 186, 364366.Google Scholar
Del Ser, T, Gonzalez-Montalvo, JI, Martinez-Espinosa, S, Delgado-Villapalos, C, Bermejo, F (1997). Estimation of premorbid intelligence in Spanish people with the Word Accentuation Test and its application to the diagnosis of dementia. Brain and Cognition 33, 343356.Google Scholar
Dennis, EL, Thompson, PM (2014). Functional brain connectivity using fMRI in aging and Alzheimer's disease. Neuropsychological Review 24, 4962.CrossRefGoogle ScholarPubMed
Derogatis, LR (1983). Symptom Checklist-90-Revised (SCL-90-R): Administration, Scoring and Procedures Manual. Clinical Psychometric Research: Towson, MD.Google Scholar
Dreher, JC, Koch, P, Kohn, P, Apud, J, Weinberger, DR, Berman, KF (2012). Common and differential pathophysiological features accompany comparable cognitive impairments in medication-free patients with schizophrenia and in healthy aging subjects. Biological Psychiatry 71, 890897.Google Scholar
Gevins, A, Cutillo, B (1993). Spatiotemporal dynamics of component processes in human working memory. Electroencephalography and Clinical Neurophysiology 87, 128143.Google Scholar
Gomar, JJ, Ortiz-Gil, J, McKenna, PJ, Salvador, R, Sans-Sansa, B, Sarro, S, Guerrero, A, Pomarol-Clotet, E (2011). Validation of the Word Accentuation Test (TAP) as a means of estimating premorbid IQ in Spanish speakers. Schizophrenia Research 128, 175176.Google Scholar
Gottesman, II (1991). Schizophrenia Genesis: the Origins of Madness. W. H. Freeman: New York.Google Scholar
Gottesman, II, Gould, TD (2003). The endophenotype concept in psychiatry: etymology and strategic intentions. American Journal of Psychiatry 160, 636645.Google Scholar
Green, DM, Swets, JA (1966). Signal Detection Theory and Psychophysics. Krieger: New York.Google Scholar
Greicius, M (2008). Resting-state functional connectivity in neuropsychiatric disorders. Current Opinion in Neurology 21, 424430.Google Scholar
Hill, K, Mann, L, Laws, KR, Stephenson, CM, Nimmo-Smith, I, McKenna, PJ (2004). Hypofrontality in schizophrenia: a meta-analysis of functional imaging studies. Acta Psychiatrica Scandinavica 110, 243256.Google Scholar
Jang, JH, Jung, WH, Choi, JS, Choi, CH, Kang, DH, Shin, NY, Hong, KS, Kwon, JS (2011). Reduced prefrontal functional connectivity in the default mode network is related to greater psychopathology in subjects with high genetic loading for schizophrenia. Schizophrenia Research 127, 5865.Google Scholar
Karch, S, Leicht, G, Giegling, I, Lutz, J, Kunz, J, Buselmeier, M, Hey, P, Sporl, A, Jager, L, Meindl, T, Pogarell, O, Moller, HJ, Hegerl, U, Rujescu, D, Mulert, C (2009). Inefficient neural activity in patients with schizophrenia and nonpsychotic relatives of schizophrenic patients: evidence from a working memory task. Journal of Psychiatric Research 43, 11851194.Google Scholar
Kay, SR, Fiszbein, A, Opler, LA (1987). The Positive and Negative Syndrome Scale (PANSS) for schizophrenia. Schizophrenia Bulletin 13, 261276.CrossRefGoogle ScholarPubMed
Kennedy, DP, Redcay, E, Courchesne, E (2006). Failing to deactivate: resting functional abnormalities in autism. Proceedings of the National Academy of Sciences of the USA 103, 82758280.Google Scholar
Leboyer, M, Bellivier, F, Nosten-Bertrand, M, Jouvent, R, Pauls, D, Mallet, J (1998). Psychiatric genetics: search for phenotypes. Trends in Neurosciences 21, 102105.Google Scholar
Liang, M, Zhou, Y, Jiang, T, Liu, Z, Tian, L, Liu, H, Hao, Y (2006). Widespread functional disconnectivity in schizophrenia with resting-state functional magnetic resonance imaging. Neuroreport 17, 209213.Google Scholar
Liddle, EB, Bates, AT, Das, D, White, TP, Groom, MJ, Jansen, M, Jackson, GM, Hollis, C, Liddle, PF (2013). Inefficient cerebral recruitment as a vulnerability marker for schizophrenia. Psychological Medicine 43, 169182.Google Scholar
Liu, H, Kaneko, Y, Ouyang, X, Li, L, Hao, Y, Chen, EY, Jiang, T, Zhou, Y, Liu, Z (2012). Schizophrenic patients and their unaffected siblings share increased resting-state connectivity in the task-negative network but not its anticorrelated task-positive network. Schizophrenia Bulletin 38, 285294.Google Scholar
MacDonald, AW 3rd, Thermenos, HW, Barch, DM, Seidman, LJ (2009). Imaging genetic liability to schizophrenia: systematic review of fMRI studies of patients’ nonpsychotic relatives. Schizophrenia Bulletin 35, 11421162.Google Scholar
Mannell, MV, Franco, AR, Calhoun, VD, Canive, JM, Thoma, RJ, Mayer, AR (2010). Resting state and task-induced deactivation: a methodological comparison in patients with schizophrenia and healthy controls. Human Brain Mapping 31, 424437.Google Scholar
McGue, M, Gottesman, II (1989). Genetic linkage in schizophrenia: perspectives from genetic epidemiology. Schizophrenia Bulletin 15, 453464.Google Scholar
Meda, SA, Bhattarai, M, Morris, NA, Astur, RS, Calhoun, VD, Mathalon, DH, Kiehl, KA, Pearlson, GD (2008). An fMRI study of working memory in first-degree unaffected relatives of schizophrenia patients. Schizophrenia Research 104, 8595.Google Scholar
Meda, SA, Gill, A, Stevens, MC, Lorenzoni, RP, Glahn, DC, Calhoun, VD, Sweeney, JA, Tamminga, CA, Keshavan, MS, Thaker, G, Pearlson, GD (2012). Differences in resting-state functional magnetic resonance imaging functional network connectivity between schizophrenia and psychotic bipolar probands and their unaffected first-degree relatives. Biological Psychiatry 71, 881889.Google Scholar
Meehl, PE (1962). Schizotaxia, schizotypy, schizophrenia. American Psychologist 17, 827838.Google Scholar
Minzenberg, MJ, Laird, AR, Thelen, S, Carter, CS, Glahn, DC (2009). Meta-analysis of 41 functional neuroimaging studies of executive function in schizophrenia. Archives of General Psychiatry 66, 811822.Google Scholar
Ongur, D, Lundy, M, Greenhouse, I, Shinn, AK, Menon, V, Cohen, BM, Renshaw, PF (2010). Default mode network abnormalities in bipolar disorder and schizophrenia. Psychiatry Research 183, 5968.Google Scholar
Pomarol-Clotet, E, Moro, N, Sarro, S, Goikolea, JM, Vieta, E, Amann, B, Fernandez-Corcuera, P, Sans-Sansa, B, Monte, GC, Capdevila, A, McKenna, PJ, Salvador, R (2012). Failure of de-activation in the medial frontal cortex in mania: evidence for default mode network dysfunction in the disorder. World Journal of Biological Psychiatry 13, 616626.Google Scholar
Pomarol-Clotet, E, Salvador, R, Sarro, S, Gomar, J, Vila, F, Martinez, A, Guerrero, A, Ortiz-Gil, J, Sans-Sansa, B, Capdevila, A, Cebamanos, JM, McKenna, PJ (2008). Failure to deactivate in the prefrontal cortex in schizophrenia: dysfunction of the default mode network? Psychological Medicine 38, 11851193.Google Scholar
Repovs, G, Csernansky, JG, Barch, DM (2011). Brain network connectivity in individuals with schizophrenia and their siblings. Biological Psychiatry 69, 967973.Google Scholar
Robins, LN, Cottler, LB, Bucholz, KK, Compton, WM, North, CS, Rourke, K (2000). Computerized Diagnostic Interview Schedule for the DSM-IV (C DIS-IV). NIMH/University of Florida: Gainesville, FL.Google Scholar
Rotarska-Jagiela, A, van de Ven, V, Oertel-Knochel, V, Uhlhaas, PJ, Vogeley, K, Linden, DE (2010). Resting-state functional network correlates of psychotic symptoms in schizophrenia. Schizophrenia Research 117, 2130.Google Scholar
Rust, J (1989). The Rust Inventory of Schizotypal Cognitions. Psychological Corporation: London, San Antonio.Google Scholar
Salgado-Pineda, P, Fakra, E, Delaveau, P, McKenna, PJ, Pomarol-Clotet, E, Blin, O (2011). Correlated structural and functional brain abnormalities in the default mode network in schizophrenia patients. Schizophrenia Research 125, 101109.Google Scholar
Salvador, R, Sarro, S, Gomar, JJ, Ortiz-Gil, J, Vila, F, Capdevila, A, Bullmore, E, McKenna, PJ, Pomarol-Clotet, E (2010). Overall brain connectivity maps show cortico-subcortical abnormalities in schizophrenia. Human Brain Mapping 31, 20032014.Google Scholar
Sambataro, F, Mattay, VS, Thurin, K, Safrin, M, Rasetti, R, Blasi, G, Callicott, JH, Weinberger, DR (2013). Altered cerebral response during cognitive control: a potential indicator of genetic liability for schizophrenia. Neuropsychopharmacology 38, 846853.Google Scholar
Schneider, FC, Royer, A, Grosselin, A, Pellet, J, Barral, FG, Laurent, B, Brouillet, D, Lang, F (2011). Modulation of the default mode network is task-dependant in chronic schizophrenia patients. Schizophrenia Research 125, 110117.Google Scholar
Sepede, G, Ferretti, A, Perrucci, MG, Gambi, F, Di Donato, F, Nuccetelli, F, Del Gratta, C, Tartaro, A, Salerno, RM, Ferro, FM, Romani, GL (2010). Altered brain response without behavioral attention deficits in healthy siblings of schizophrenic patients: an event-related fMRI study. NeuroImage 49, 10801090.Google Scholar
Sheline, YI, Barch, DM, Price, JL, Rundle, MM, Vaishnavi, SN, Snyder, AZ, Mintun, MA, Wang, S, Coalson, RS, Raichle, ME (2009). The default mode network and self-referential processes in depression. Proceedings of the National Academy of Sciences of the USA 106, 19421947.Google Scholar
Smith, SM, Jenkinson, M, Woolrich, MW, Beckmann, CF, Behrens, TE, Johansen-Berg, H, Bannister, PR, De Luca, M, Drobnjak, I, Flitney, DE, Niazy, RK, Saunders, J, Vickers, J, Zhang, Y, De Stefano, N, Brady, JM, Matthews, PM (2004). Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage 23 (Suppl. 1), S208S219.Google Scholar
Spencer, MD, Chura, LR, Holt, RJ, Suckling, J, Calder, AJ, Bullmore, ET, Baron-Cohen, S (2012). Failure to deactivate the default mode network indicates a possible endophenotype of autism. Molecular Autism 3, 15.Google Scholar
Stolz, E, Pancholi, KM, Goradia, DD, Paul, S, Keshavan, MS, Nimgaonkar, VL, Prasad, KM (2012). Brain activation patterns during visual episodic memory processing among first-degree relatives of schizophrenia subjects. NeuroImage 63, 11541161.Google Scholar
van Buuren, M, Vink, M, Kahn, RS (2012). Default-mode network dysfunction and self-referential processing in healthy siblings of schizophrenia patients. Schizophrenia Research 142, 237243.Google Scholar
Wechsler, D (2001). Escala de inteligencia de Wechsler para adultos - III. TEA Ediciones, S.A.: Madrid. Google Scholar
Weinberger, DR, Egan, MF, Bertolino, A, Callicott, JH, Mattay, VS, Lipska, BK, Berman, KF, Goldberg, TE (2001). Prefrontal neurons and the genetics of schizophrenia. Biological Psychiatry 50, 825844.Google Scholar
Welvaert, M, Rosseel, Y (2013). On the definition of signal-to-noise ratio and contrast-to-noise ratio for fMRI data. PLOS ONE 8, e77089.Google Scholar
Whitfield-Gabrieli, S, Thermenos, HW, Milanovic, S, Tsuang, MT, Faraone, SV, McCarley, RW, Shenton, ME, Green, AI, Nieto-Castanon, A, LaViolette, P, Wojcik, J, Gabrieli, JD, Seidman, LJ (2009). Hyperactivity and hyperconnectivity of the default network in schizophrenia and in first-degree relatives of persons with schizophrenia. Proceedings of the National Academy of Sciences of the USA 106, 12791284.Google Scholar
Woodward, ND, Waldie, B, Rogers, B, Tibbo, P, Seres, P, Purdon, SE (2009). Abnormal prefrontal cortical activity and connectivity during response selection in first episode psychosis, chronic schizophrenia, and unaffected siblings of individuals with schizophrenia. Schizophrenia Research 109, 182190.Google Scholar
Supplementary material: File

Landin-Romero Supplementary Material

Supplementary Material

Download Landin-Romero Supplementary Material(File)
File 59.4 KB