Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-13T01:44:39.717Z Has data issue: false hasContentIssue false

Hypogyrification in obsessive-compulsive disorder

Published online by Cambridge University Press:  12 December 2016

O. G. Rus*
Affiliation:
Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany TUM-Neuroimaging Center (TUM-NIC) of Klinikum rechts der Isar, Technische Universität München TUM, Munich, Germany Graduate School of Systemic Neurosciences GSN, Ludwig-Maximilians-Universität, Biocenter, Munich, Germany
T. J. Reess
Affiliation:
Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany TUM-Neuroimaging Center (TUM-NIC) of Klinikum rechts der Isar, Technische Universität München TUM, Munich, Germany Graduate School of Systemic Neurosciences GSN, Ludwig-Maximilians-Universität, Biocenter, Munich, Germany
G. Wagner
Affiliation:
Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
M. Zaudig
Affiliation:
Windach Institute and Hospital of Neurobehavioural Research and Therapy (WINTR), Windach, Germany
C. Zimmer
Affiliation:
Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany TUM-Neuroimaging Center (TUM-NIC) of Klinikum rechts der Isar, Technische Universität München TUM, Munich, Germany
K. Koch
Affiliation:
Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany TUM-Neuroimaging Center (TUM-NIC) of Klinikum rechts der Isar, Technische Universität München TUM, Munich, Germany Graduate School of Systemic Neurosciences GSN, Ludwig-Maximilians-Universität, Biocenter, Munich, Germany
*
*Address for correspondence: Dipl.-Psych. O. G. Rus, Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Ismaningerstrasse 22, 81675 Munich, Germany. (Email: georgiana.rus@tum.de)

Abstract

Background

Previous studies hypothesized that neurodevelopmental risk factors may play a role in the pathogenesis of obsessive-compulsive disorder (OCD). Cortical folding has been shown to be a reliable indicator for normal and altered neurodevelopment, but in OCD it has barely been investigated up to now. The present study investigates whether alterations in gyrification are detectable in OCD and, if so, how these are associated with clinical characteristics.

Method

We compared the local Gyrification Index (lGI) between 75 OCD patients and 75 matched healthy subjects across the whole brain. In addition, for those regions exhibiting an altered lGI in patients we explored a potential relationship to symptom severity, age of onset, and influence of medication.

Results

OCD patients had a significantly decreased lGI in right parietal, precentral but also insula, temporal, pars triangularis and rostral middle frontal regions compared to healthy subjects. A positive association with age of onset was found but no association with symptom severity. There was no effect of co-morbidity or medication.

Conclusions

The reduced gyrification found in OCD confirms previous findings in other psychiatric disorders and suggests that alterations may already occur during early stages of brain development. Our findings support the idea that altered cortical folding might represent a trait characteristic of the disorder although longitudinal studies are needed to clarify the trajectory of this morphological measure in OCD.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Armstrong, E, Schleicher, A, Omran, H, Curtis, M, Zilles, K (1995). The ontogeny of human gyrification. Cerebral Cortex 5, 5663.Google Scholar
Atmaca, M (2013). The effects of psychopharmacologic and therapeutic approaches on neuro-imaging in obsessive-compulsive disorder. Current Neuropharmacology 11, 109113.Google Scholar
Bradshaw, JL, Sheppard, DM (2000). The neurodevelopmental frontostriatal disorders: evolutionary adaptiveness and anomalous lateralization. Brain and Language 73, 297320.CrossRefGoogle ScholarPubMed
De Wit, SJ, Alonso, P, Schweren, L, Mataix-Cols, D, Lochner, C, Menchon, JM, Stein, DJ, Fouche, JP, Soriano-Mas, C, Sato, JR, Hoexter, MQ, Denys, D, Nakamae, T, Nishida, S, Kwon, JS, Jang, JH, Busatto, GF, Cardoner, N, Cath, DC, Fukui, K, Jung, WH, Kim, SN, Miguel, EC, Narumoto, J, Phillips, ML, Pujol, J, Remijnse, PL, Sakai, Y, Shin, NY, Yamada, K, Veltman, DJ, Van den Heuvel, OA (2014). Multicenter voxel-based morphometry mega-analysis of structural brain scans in obsessive-compulsive disorder. American Journal of Psychiatry 171, 340349.CrossRefGoogle ScholarPubMed
Fan, Q, Palaniyappan, L, Tan, L, Wang, J, Wang, X, Li, C, Zhang, T, Jiang, K, Xiao, Z, Liddle, PF (2013). Surface anatomical profile of the cerebral cortex in obsessive-compulsive disorder: a study of cortical thickness, folding and surface area. Psychological Medicine 43, 10811091.Google Scholar
Fischl, B, Dale, AM (2000). Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proceedings of the National Academy of Sciences USA 97, 1105011055.CrossRefGoogle ScholarPubMed
Goodman, WK, Price, LH, Rasmussen, SA, Mazure, C, Fleischmann, RL, Hill, CL, Heninger, GR, Charney, DS (1989). The Yale-Brown Obsessive Compulsive Scale. I. Development, use, and reliability. Archives of General Psychiatry 46, 10061011.Google Scholar
Hagler, DJ Jr., Saygin, AP, Sereno, MI (2006). Smoothing and cluster thresholding for cortical surface-based group analysis of fMRI data. NeuroImage 33, 10931103.CrossRefGoogle ScholarPubMed
Hoexter, MQ, De Souza Duran, FL, D'alcante, CC, Dougherty, DD, Shavitt, RG, Lopes, AC, Diniz, JB, Deckersbach, T, Batistuzzo, MC, Bressan, RA, Miguel, EC, Busatto, GF (2012). Gray matter volumes in obsessive-compulsive disorder before and after fluoxetine or cognitive-behavior therapy: a randomized clinical trial. Neuropsychopharmacology 37, 734745.CrossRefGoogle ScholarPubMed
Huyser, C, Veltman, DJ, De Haan, E, Boer, F (2009). Paediatric obsessive-compulsive disorder, a neurodevelopmental disorder? Evidence from neuroimaging. Neuroscience and Biobehavioral Reviews 33, 818830.CrossRefGoogle ScholarPubMed
Klein, D, Rotarska-Jagiela, A, Genc, E, Sritharan, S, Mohr, H, Roux, F, Han, CE, Kaiser, M, Singer, W, Uhlhaas, PJ (2014). Adolescent brain maturation and cortical folding: evidence for reductions in gyrification. PLoS ONE 9, e84914.CrossRefGoogle ScholarPubMed
Koch, K, Reess, TJ, Rus, OG, Zimmer, C, Zaudig, M (2014). Diffusion tensor imaging (DTI) studies in patients with obsessive-compulsive disorder (OCD): a review. Journal of Psychiatric Research 54, 2635.CrossRefGoogle ScholarPubMed
Kodama, M, Fujioka, T, Duman, RS (2004). Chronic olanzapine or fluoxetine administration increases cell proliferation in hippocampus and prefrontal cortex of adult rat. Biological Psychiatry 56, 570580.CrossRefGoogle ScholarPubMed
Magnotta, VA, Andreasen, NC, Schultz, SK, Harris, G, Cizadlo, T, Heckel, D, Nopoulos, P, Flaum, M (1999). Quantitative in vivo measurement of gyrification in the human brain: changes associated with aging. Cerebral Cortex 9, 151160.Google Scholar
Mills, KL, Tamnes, CK (2014). Methods and considerations for longitudinal structural brain imaging analysis across development. Developmental Cognitive Neuroscience 9, 172190.CrossRefGoogle ScholarPubMed
Moorhead, TW, Harris, JM, Stanfield, AC, Job, DE, Best, JJ, Johnstone, EC, Lawrie, SM (2006). Automated computation of the Gyrification Index in prefrontal lobes: methods and comparison with manual implementation. NeuroImage 31, 15601566.CrossRefGoogle ScholarPubMed
Nanda, P, Tandon, N, Mathew, IT, Giakoumatos, CI, Abhishekh, HA, Clementz, BA, Pearlson, GD, Sweeney, J, Tamminga, CA, Keshavan, MS (2014). Local gyrification index in probands with psychotic disorders and their first-degree relatives. Biological Psychiatry 76, 447455.Google Scholar
Nixon, NL, Liddle, PF, Nixon, E, Worwood, G, Liotti, M, Palaniyappan, L (2014). Biological vulnerability to depression: linked structural and functional brain network findings. British Journal of Psychiatry 204, 283289.CrossRefGoogle ScholarPubMed
Piras, F, Piras, F, Caltagirone, C, Spalletta, G (2013). Brain circuitries of obsessive compulsive disorder: a systematic review and meta-analysis of diffusion tensor imaging studies. Neuroscence andi Biobehavioural Reviews 37, 28562877.CrossRefGoogle ScholarPubMed
Piras, F, Piras, F, Chiapponi, C, Girardi, P, Caltagirone, C, Spalletta, G (2015). Widespread structural brain changes in OCD: a systematic review of voxel-based morphometry studies. Cortex 62, 89108.Google Scholar
Raznahan, A, Shaw, P, Lalonde, F, Stockman, M, Wallace, GL, Greenstein, D, Clasen, L, Gogtay, N, Giedd, JN (2011). How does your cortex grow? Journal of Neuroscience 31, 71747177.Google Scholar
Rosenberg, DR, Keshavan, MS (1998). A.E. Bennett Research Award. Toward a neurodevelopmental model of of obsessive--compulsive disorder. Biological Psychiatry 43, 623640.CrossRefGoogle Scholar
Saxena, S, Rauch, SL (2000). Functional neuroimaging and the neuroanatomy of obsessive-compulsive disorder. Psychiatric Clinics of North America 23, 563586.Google Scholar
Schaer, M, Cuadra, MB, Schmansky, N, Fischl, B, Thiran, JP, Eliez, S (2012). How to measure cortical folding from MR images: a step-by-step tutorial to compute local gyrification index. Journal of Visualized Experiments 59, e3417.Google Scholar
Schaer, M, Cuadra, MB, Tamarit, L, Lazeyras, F, Eliez, S, Thiran, JP (2008). A surface-based approach to quantify local cortical gyrification. IEEE Transactions on Medical Imaging 27, 161170.CrossRefGoogle ScholarPubMed
Shim, G, Jung, WH, Choi, JS, Jung, MH, Jang, JH, Park, JY, Choi, CH, Kang, DH, Kwon, JS (2009). Reduced cortical folding of the anterior cingulate cortex in obsessive-compulsive disorder. Journal of Psychiatry and Neuroscience 34, 443449.Google Scholar
Stahl, R, Walcher, T, De Juan Romero, C, Pilz, GA, Cappello, S, Irmler, M, Sanz-Aquela, JM, Beckers, J, Blum, R, Borrell, V, GotZ, M (2013). Trnp1 regulates expansion and folding of the mammalian cerebral cortex by control of radial glial fate. Cell 153, 535549.CrossRefGoogle ScholarPubMed
Tallinen, T, Chung, JY, Biggins, JS, Mahadevan, L (2014). Gyrification from constrained cortical expansion. Proceedings of the National Academy of Sciences USA 111, 1266712672.Google Scholar
Tallinen, T, Chung, JY, Rousseau, F, Girard, N, Lefevre, J, Mahadevan, L (2016). On the growth and form of cortical convolutions. Nature Physics 12, 588593.Google Scholar
Tibbo, P, Warneke, L (1999). Obsessive-compulsive disorder in schizophrenia: epidemiologic and biologic overlap. Journal of Psychiatry and Neuroscience 24, 1524.Google ScholarPubMed
Van Essen, DC (1997). A tension-based theory of morphogenesis and compact wiring in the central nervous system. Nature 385, 313318.CrossRefGoogle ScholarPubMed
Van Essen, DC, Drury, HA (1997). Structural and functional analyses of human cerebral cortex using a surface-based atlas. Journal of Neuroscience 17, 70797102.CrossRefGoogle ScholarPubMed
Venkatasubramanian, G, Zutshi, A, Jindal, S, Srikanth, SG, Kovoor, JM, Kumar, JK, Janardhan Reddy, YC (2012). Comprehensive evaluation of cortical structure abnormalities in drug-naive, adult patients with obsessive-compulsive disorder: a surface-based morphometry study. Journal of Psychiatric Research 46, 11611168.CrossRefGoogle ScholarPubMed
Wobrock, T, Gruber, O, Mcintosh, AM, Kraft, S, Klinghardt, A, Scherk, H, Reith, W, Schneider-Axmann, T, Lawrie, SM, Falkai, P, Moorhead, TW (2010). Reduced prefrontal gyrification in obsessive-compulsive disorder. European Archives of Psychiatry and Clinical Neuroscience 260, 455464.CrossRefGoogle ScholarPubMed
Yoon, S, Jun, CS, Jeong, HS, Lee, S, Lim, SM, Ma, J, Ko, E, Cho, HB, Yeum, TS, Lyoo, IK (2013). Altered cortical gyrification patterns in panic disorder: deficits and potential compensation. Journal of Psychiatric Research 47, 14461454.Google Scholar
Zhang, Y, Yu, C, Zhou, Y, Li, K, Li, C, Jiang, T (2009). Decreased gyrification in major depressive disorder. Neuroreport 20, 378380.CrossRefGoogle ScholarPubMed
Zilles, K, Palomero-Gallagher, N, Amunts, K (2013). Development of cortical folding during evolution and ontogeny. Trends in Neuroscience 36, 275284.CrossRefGoogle ScholarPubMed