Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-13T12:16:28.032Z Has data issue: false hasContentIssue false

Longitudinal PTSD network structure: measuring PTSD symptom networks over 5 years

Published online by Cambridge University Press:  28 March 2022

Michael L. Crowe*
Affiliation:
National Center for PTSD, Behavioral Science Division, VA Boston Healthcare System, Boston, USA
Kelly L. Harper
Affiliation:
National Center for PTSD, Behavioral Science Division, VA Boston Healthcare System, Boston, USA
Samantha J. Moshier
Affiliation:
Department of Psychology, Emmanuel College, Boston, USA
Terence M. Keane
Affiliation:
National Center for PTSD, Behavioral Science Division, VA Boston Healthcare System, Boston, USA Department of Psychiatry, Boston University School of Medicine, Boston, USA
Brian P. Marx
Affiliation:
National Center for PTSD, Behavioral Science Division, VA Boston Healthcare System, Boston, USA Department of Psychiatry, Boston University School of Medicine, Boston, USA
*
Author for correspondence: Michael L. Crowe, E-mail: michael.l.crowe@gmail.com

Abstract

Background

Network modeling has been applied in a range of trauma-exposed samples, yet results are limited by an over reliance on cross-sectional data. The current analyses used posttraumatic stress disorder (PTSD) symptom data collected over a 5-year period to estimate a more robust between-subject network and an associated symptom change network.

Methods

A PTSD symptom network is measured in a sample of military veterans across four time points (Ns = 1254, 1231, 1106, 925). The repeated measures permit isolating between-subject associations by limiting the effects of within-subject variability. The result is a highly reliable PTSD symptom network. A symptom slope network depicting covariation of symptom change over time is also estimated.

Results

Negative trauma-related emotions had particularly strong associations with the network. Trauma-related amnesia, sleep disturbance, and self-destructive behavior had weaker overall associations with other PTSD symptoms.

Conclusions

PTSD's network structure appears stable over time. There is no single ‘most important’ node or node cluster. The relevance of self-destructive behavior, sleep disturbance, and trauma-related amnesia to the PTSD construct may deserve additional consideration.

Type
Original Article
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

American Psychiatric Association (2013). Diagnostic and statistical manual of mental disorders: DSM-5. Arlington, VA: American Psychiatric Association.Google Scholar
Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B (Methodological), 57, 289300.Google Scholar
Birkeland, M. S., Greene, T., & Spiller, T. R. (2020). The network approach to posttraumatic stress disorder: A systematic review. European Journal of Psychotraumatology, 11, 114. doi: 10.1080/20008198.2019.1700614.CrossRefGoogle Scholar
Borsboom, D., & Cramer, A. O. J. (2013). Network analysis: An integrative approach to the structure of psychopathology. Annual Review of Clinical Psychology, 9, 91121.CrossRefGoogle Scholar
Bovin, M. J., Marx, B. P., Weathers, F. W., Gallagher, M. W., Rodriguez, P., Schnurr, P. P., & Keane, T. M. (2016). Psychometric properties of the PTSD checklist for diagnostic and statistical manual of mental disorders–fifth edition (PCL-5) in veterans. Psychological Assessment, 28, 13791391.CrossRefGoogle ScholarPubMed
Campbell, S. B., Trachik, B., Goldberg, S., & Simpson, T. L. (2020). Identifying PTSD symptom typologies: A latent class analysis. Psychiatry Research, 285, 111. doi: 10.1016/j.psychres.2020.112779.CrossRefGoogle ScholarPubMed
Chen, J., & Chen, Z. (2008). Extended Bayesian information criteria for model selection with large model spaces. Biometrika, 95, 759771.CrossRefGoogle Scholar
Costantini, G., Richetin, J., Preti, E., Casini, E., Epskamp, S., & Perugini, M. (2019). Stability and variability of personality networks. A tutorial on recent developments in network psychometrics. Personality and Individual Differences, 136, 6878.CrossRefGoogle Scholar
Cusack, K., Jonas, D. E., Forneris, C. A., Wines, C., Sonis, J., Middleton, J. C., … Gaynes, B. N. (2016). Psychological treatments for adults with posttraumatic stress disorder: A systematic review and meta-analysis. Clinical Psychology Review, 43, 128141.CrossRefGoogle ScholarPubMed
Deserno, M. K., Sachisthal, M. S. M., Epskamp, S., & Raijmakers, M. E. J. (under review). A magnifying glass for the study of coupled developmental changes: Combining psychological networks and latent growth models. https://doi.org/10.31234/osf.io/ngfxqCrossRefGoogle Scholar
Dickstein, B. D., Suvak, M., Litz, B. T., & Adler, A. B. (2010). Heterogeneity in the course of posttraumatic stress disorder: Trajectories of symptomatology. Journal of Traumatic Stress, 23(3), 331339.CrossRefGoogle ScholarPubMed
Epskamp, S., Borsboom, D., & Fried, E. I. (2018a). Estimating psychological networks and their accuracy: A tutorial paper. Behavior Research Methods, 50, 195212.CrossRefGoogle ScholarPubMed
Epskamp, S., Waldorp, L. J., Mõttus, R., & Borsboom, D. (2018b). The Gaussian graphical model in cross-sectional and time-series data. Multivariate Behavioral Research, 53, 453480.CrossRefGoogle ScholarPubMed
Fried, E. I., & Cramer, A. O. J. (2017). Moving forward: Challenges and directions for psychopathological network theory and methodology. Perspectives on Psychological Science, 12, 9991020.CrossRefGoogle ScholarPubMed
Greene, T., Gelkopf, M., Epskamp, S., & Fried, E. (2018). Dynamic networks of PTSD symptoms during conflict. Psychological Medicine, 48, 24092417.CrossRefGoogle ScholarPubMed
Gutner, C. A., Casement, M. D., Gilbert, K. S., & Resick, P. A. (2013). Change in sleep symptoms across cognitive processing therapy and prolonged exposure: A longitudinal perspective. Behaviour Research and Therapy, 51, 817822.CrossRefGoogle ScholarPubMed
Hoffart, A., Langkaas, T. F., Øktedalen, T., & Johnson, S. U. (2019). The temporal dynamics of symptoms during exposure therapies of PTSD: A network approach. European Journal of Psychotraumatology, 10, 111. doi: 10.1080/20008198.2019.1618134.CrossRefGoogle ScholarPubMed
Hu, L., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal, 6, 155.CrossRefGoogle Scholar
Keane, T. M., Rubin, A., Lachowicz, M., Brief, D., Enggasser, J. L., Roy, M., … Rosenbloom, D. (2014). Temporal stability of DSM–5 posttraumatic stress disorder criteria in a problem-drinking sample. Psychological Assessment, 26, 11381145.CrossRefGoogle Scholar
Koffel, E., Khawaja, I. S., & Germain, A. (2016). Sleep disturbances in posttraumatic stress disorder: Updated review and implications for treatment. Psychiatric Annals, 46, 173176.CrossRefGoogle ScholarPubMed
R Core Team (2020). R: A language and environment for statistical computing (4.0.2) [Computer software]. R Foundation for Statistical Computing.Google Scholar
Robinaugh, D. J., Millner, A. J., & McNally, R. J. (2016). Identifying highly influential nodes in the complicated grief network. Journal of Abnormal Psychology, 125, 747757.CrossRefGoogle ScholarPubMed
R Studio Team (2021). RStudio: Integrated development environment for R (1.4.1103) [Computer software]. RStudio, PBC.Google Scholar
Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological), 58, 267288.Google Scholar
Trachik, B., Elliman, T. D., Ganulin, M. L., Dretsch, M. N., Riviere, L. A., Cabrera, O. A., … Hoge, C. W. (2020). Order effects in PTSD network analysis: Important implications for diagnostic conceptualization, treatment refinement, and research. Psychological Medicine, 18. doi: 10.1017/S0033291720004377.Google ScholarPubMed
Van Borkulo, C. D., Van Bork, R., Boschloo, L., Kossakowski, J., Tio, P., Schoevers, R. A., … Waldorp, L. J. (in press). Comparing network structures on three aspects: A permutation test. Psychological Methods. https://doi.org/10.31234/osf.io/ftx4j.Google Scholar
von Klipstein, L., Borsboom, D., & Arntz, A. (2021). The exploratory value of cross-sectional partial correlation networks: Predicting relationships between change trajectories in borderline personality disorder. PLoS ONE, 16, 114. doi: 10.1371/journal.pone.0254496.CrossRefGoogle ScholarPubMed
von Stockert, S. H. H., Fried, E. I., Armour, C., & Pietrzak, R. H. (2018). Evaluating the stability of DSM-5 PTSD symptom network structure in a national sample of U.S. military veterans. Journal of Affective Disorders, 229, 6368.CrossRefGoogle Scholar
Weathers, F. W., Litz, B. T., Keane, T. M., Palmieri, P. A., & Schnurr, P. P. (2013). The PTSD Checklist for DSM-5 (PCL-5).Google Scholar
World Health Organization (2019). International Statistical Classification of Diseases and Related Health Problems (11th ed.). https://icd.who.int/.Google Scholar
Supplementary material: File

Crowe et al. supplementary material

Crowe et al. supplementary material

Download Crowe et al. supplementary material(File)
File 1.2 MB