Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-14T13:23:09.621Z Has data issue: false hasContentIssue false

Mismatch negativity and clinical trajectories in psychotic disorders: Five-year stability and predictive utility

Published online by Cambridge University Press:  13 October 2022

Kayla R. Donaldson*
Affiliation:
Department of Psychology, Stony Brook University, Stony Brook, NY, USA
Katherine Jonas
Affiliation:
Department of Psychiatry, Stony Brook Medicine, Stony Brook, NY, USA
Dan Foti
Affiliation:
Department of Psychological Sciences, Purdue University, West Lafayette, IN, USA
Emmett M. Larsen
Affiliation:
Department of Psychology, Stony Brook University, Stony Brook, NY, USA
Aprajita Mohanty
Affiliation:
Department of Psychology, Stony Brook University, Stony Brook, NY, USA
Roman Kotov*
Affiliation:
Department of Psychiatry, Stony Brook Medicine, Stony Brook, NY, USA
*
Authors for correspondence: Kayla R. Donaldson, E-mail: kayla.donaldson@stonybrook.edu; Roman Kotov, E-mail: roman.kotov@stonybrookmedicine.edu
Authors for correspondence: Kayla R. Donaldson, E-mail: kayla.donaldson@stonybrook.edu; Roman Kotov, E-mail: roman.kotov@stonybrookmedicine.edu

Abstract

Background

Mismatch negativity (MMN) amplitude is reduced in psychotic disorders and associated with symptoms and functioning. Due to these robust associations, it is often considered a biomarker for psychotic illness. The relationship between MMN and clinical outcomes has been examined well in early onset psychotic illness; however, its stability and predictive utility in chronic samples are not clear.

Method

We examined the five-year stability of MMN amplitude over two timepoints in individuals with established psychotic disorders (cases; N = 132) and never-psychotic participants (NP; N = 170), as well as longitudinal associations with clinical symptoms and functioning.

Results

MMN amplitude exhibited good temporal stability (cases, r = 0.53; never-psychotic, r = 0.52). In cases, structural equation models revealed MMN amplitude to be a significant predictor of worsening auditory hallucinations (β = 0.19), everyday functioning (β = −0.13), and illness severity (β = −0.12) at follow-up. Meanwhile, initial IQ (β = −0.24), negative symptoms (β = 0.23), and illness severity (β = −0.16) were significant predictors of worsening MMN amplitude five years later.

Conclusions

These results imply that MMN measures a neural deficit that is reasonably stable up to five years. Results support disordered cognition and negative symptoms as preceding reduced MMN, which then may operate as a mechanism driving reductions in everyday functioning and the worsening of auditory hallucinations in chronic psychotic disorders. This pattern may inform models of illness course, clarifying the relationships amongst biological mechanisms of predictive processing and clinical deficits in chronic psychosis and allowing us to better understand the mechanisms driving such impairments over time.

Type
Original Article
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Indicates joint senior authorship.

References

Addington, J., Addington, D., & Maticka-Tyndale, E. (1991). Cognitive functioning and positive and negative symptoms in schizophrenia. Schizophrenia Research, 5(2), 123134.CrossRefGoogle ScholarPubMed
Andreasen, N. C. (1984). Scale for the assessment of positive symptoms (SAPS). Iowa City: University of Iowa Iowa City.Google Scholar
Andreasen, N. C. (1989). The Scale for the Assessment of Negative Symptoms (SANS): Conceptual and theoretical foundations. The British Journal of Psychiatry, 155(S7), 4952.CrossRefGoogle Scholar
Baldeweg, T., & Hirsch, S. R. (2015). Mismatch negativity indexes illness-specific impairments of cortical plasticity in schizophrenia: A comparison with bipolar disorder and Alzheimer's disease. International Journal of Psychophysiology, 95(2), 145155.CrossRefGoogle ScholarPubMed
Baldeweg, T., Klugman, A., Gruzelier, J., & Hirsch, S. R. (2004). Mismatch negativity potentials and cognitive impairment in schizophrenia. Schizophrenia Research, 69(2), 203217.CrossRefGoogle ScholarPubMed
Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B (Methodological), 57(1), 289300.Google Scholar
Bertoli, S., Smurzynski, J., & Probst, R. (2002). Temporal resolution in young and elderly subjects as measured by mismatch negativity and a psychoacoustic gap detection task. Clinical Neurophysiology, 113(3), 396406.CrossRefGoogle Scholar
Bodatsch, M., Ruhrmann, S., Wagner, M., Müller, R., Schultze-Lutter, F., Frommann, I., … Klosterkötter, J. (2011). Prediction of psychosis by mismatch negativity. Biological Psychiatry, 69(10), 959966.CrossRefGoogle ScholarPubMed
Bromet, E. J., Kotov, R., Fochtmann, L. J., Carlson, G. A., Tanenberg-Karant, M., Ruggero, C., & Chang, S.-W. (2011). Diagnostic shifts during the decade following first admission for psychosis. American Journal of Psychiatry, 168(11), 11861194.CrossRefGoogle ScholarPubMed
Brown, S., Inskip, H., & Barraclough, B. (2000). Causes of the excess mortality of schizophrenia. The British Journal of Psychiatry, 177(3), 212217.CrossRefGoogle ScholarPubMed
Cannon, T. D. (2015). How schizophrenia develops: Cognitive and brain mechanisms underlying onset of psychosis. Trends in Cognitive Sciences, 19(12), 744756.CrossRefGoogle ScholarPubMed
Carpenter, W. T. Jr., & Kirkpatrick, B. (1988). The heterogeneity of the long-term course of schizophrenia. Schizophrenia Bulletin, 14(4), 645652.CrossRefGoogle ScholarPubMed
Chi, M. H., Hsiao, C. Y., Chen, K. C., Lee, L.-T., Tsai, H. C., Lee, I. H., … Yang, Y. K. (2016). The readmission rate and medical cost of patients with schizophrenia after first hospitalization – A 10-year follow-up population-based study. Schizophrenia Research, 170(1), 184190.CrossRefGoogle ScholarPubMed
Cooper, R. J., Todd, J., McGill, K., & Michie, P. T. (2006). Auditory sensory memory and the aging brain: A mismatch negativity study. Neurobiology of Aging, 27(5), 752762.CrossRefGoogle ScholarPubMed
Csernansky, J. G., & Schuchart, E. K. (2002). Relapse and rehospitalisation rates in patients with schizophrenia. CNS Drugs, 16(7), 473484.CrossRefGoogle ScholarPubMed
Donaldson, K. R., Larsen, E. M., Jonas, K., Tramazzo, S., Perlman, G., Foti, D., … Kotov, R. (2021). Mismatch negativity amplitude in first-degree relatives of individuals with psychotic disorders: Links with cognition and schizotypy. Schizophrenia Research, 238, 161169.CrossRefGoogle ScholarPubMed
Donaldson, K. R., Novak, K. D., Foti, D., Marder, M., Perlman, G., Kotov, R., & Mohanty, A. (2020). Associations of mismatch negativity with psychotic symptoms and functioning transdiagnostically across psychotic disorders. Journal of Abnormal Psychology, 129(6), 570.CrossRefGoogle ScholarPubMed
Duncan, C. C., Barry, R. J., Connolly, J. F., Fischer, C., Michie, P. T., Näätänen, R., … Van Petten, C. (2009). Event-related potentials in clinical research: Guidelines for eliciting, recording, and quantifying mismatch negativity, P300, and N400. Clinical Neurophysiology, 120(11), 18831908.CrossRefGoogle ScholarPubMed
Elliott, M. L., Knodt, A. R., Ireland, D., Morris, M. L., Poulton, R., Ramrakha, S, … Hariri, A. R. (2020). What is the test-retest reliability of common task-functional MRI measures? New empirical evidence and a meta-analysis. Psychological Science, 31(7), 792806.CrossRefGoogle ScholarPubMed
Erickson, M. A., Albrecht, M., Ruffle, A., Fleming, L., Corlett, P., & Gold, J. (2017). No association between symptom severity and MMN impairment in schizophrenia: A meta-analytic approach. Schizophrenia Research: Cognition, 9, 1317.Google ScholarPubMed
Erickson, M. A., Ruffle, A., & Gold, J. M. (2016). A meta-analysis of mismatch negativity in schizophrenia: From clinical risk to disease specificity and progression. Biological Psychiatry, 79(12), 980987.CrossRefGoogle ScholarPubMed
Fett, A.-K. J., Velthorst, E., Reichenberg, A., Ruggero, C. J., Callahan, J. L., Fochtmann, L. J., … Kotov, R. (2019). Long-term changes in cognitive functioning in individuals with psychotic disorders: Findings from the Suffolk County mental health project. JAMA Psychiatry, 77(4), 387396.CrossRefGoogle Scholar
First, M., Spitzer, R., Gibbon, M., & Williams, J. (2001). Structured clinical interview for DSM-IV-TR disorders – Non-patient edition (SCID – NP). New York: New York State Psychiatric Institute.Google Scholar
Fisher, D. J., Grant, B., Smith, D. M., Borracci, G., Labelle, A., & Knott, V. J. (2011). Effects of auditory hallucinations on the mismatch negativity (MMN) in schizophrenia as measured by a modified ‘optimal' multi-feature paradigm. International Journal of Physiology, 81(3), 245251.Google ScholarPubMed
Fisher, D. J., Labelle, A., & Knott, V. J. (2008). The right profile: Mismatch negativity in schizophrenia with and without auditory hallucinations as measured by a multi-feature paradigm. Clinical Neurophysiology, 119(4), 909921.CrossRefGoogle ScholarPubMed
Fisher, D. J., Labelle, A., & Knott, V. J. (2012). Alterations of mismatch negativity (MMN) in schizophrenia patients with auditory hallucinations experiencing acute exacerbation of illness. Schizophrenia Research, 139(1–3), 237245.CrossRefGoogle ScholarPubMed
Foti, D., Perlman, G., Hajcak, G., Mohanty, A., Jackson, F., & Kotov, R. (2016). Impaired error processing in late-phase psychosis: Four-year stability and relationships with negative symptoms. Schizophrenia Research, 176(2–3), 520526.CrossRefGoogle ScholarPubMed
Friston, K. J. (2005). Hallucinations and perceptual inference. Behavioral and Brain Sciences, 28(6), 764766.CrossRefGoogle Scholar
Funder, D. C., & Ozer, D. J. (2019). Evaluating effect size in psychological research: Sense and nonsense. Advances in Methods and Practices in Psychological Science, 2(2), 156168.CrossRefGoogle Scholar
Garrido, M. I., Friston, K. J., Kiebel, S. J., Stephan, K. E., Baldeweg, T., & Kilner, J. M. (2008). The functional anatomy of the MMN: A DCM study of the roving paradigm. NeuroImage, 42(2), 936944. https://doi.org/10.1016/j.neuroimage.2008.05.018.CrossRefGoogle ScholarPubMed
Garrido, M. I., Kilner, J. M., Stephan, K. E., & Friston, K. J. (2009). The mismatch negativity: A review of underlying mechanisms. Clinical Neurophysiology, 120(3), 453463.CrossRefGoogle ScholarPubMed
Garver, D. L., & Christensen, J. D. (2000). Heterogeneity of response to antipsychotics from multiple disorders in the schizophrenia spectrum. The Journal of Clinical Psychiatry, 61(12), 8174.CrossRefGoogle ScholarPubMed
Gratton, G., Coles, M. G., & Donchin, E. (1983). A new method for off-line removal of ocular artifact. Electroencephalography and Clinical Neurophysiology, 55(4), 468484.CrossRefGoogle ScholarPubMed
Haarsma, J., Knolle, F., Griffin, J. D., Taverne, H., Mada, M., & Goodyer, I. M., … Nspn Consortium. (2020). Influence of prior beliefs on perception in early psychosis: Effects of illness stage and hierarchical level of belief. Journal of Abnormal Psychology, 129(6), 581.CrossRefGoogle ScholarPubMed
Hall, R. C. (1995). Global assessment of functioning: A modified scale. Psychosomatics, 36(3), 267275.CrossRefGoogle ScholarPubMed
Hamilton, H. K., Boos, A. K., & Mathalon, D. H. (2020). Electroencephalography and event-related potential biomarkers in individuals at clinical high risk for psychosis. Biological Psychiatry, 88(4), 294303.CrossRefGoogle ScholarPubMed
Harvey, P. D., Loewenstein, D. A., & Czaja, S. J. (2013). Hospitalization and psychosis: Influences on the course of cognition and everyday functioning in people with schizophrenia. Neurobiology of Disease, 53, 1825.CrossRefGoogle ScholarPubMed
Heinrichs, D. W., Hanlon, T. E., & Carpenter, W. T. Jr. (1984). The quality of life scale: An instrument for rating the schizophrenic deficit syndrome. Schizophrenia Bulletin, 10(3), 388398.CrossRefGoogle ScholarPubMed
Hermens, D. F., Ward, P. B., Hodge, M. A. R., Kaur, M., Naismith, S. L., & Hickie, I. B. (2010). Impaired MMN/P3a complex in first-episode psychosis: Cognitive and psychosocial associations. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 34(6), 822829.CrossRefGoogle ScholarPubMed
Heydebrand, G., Weiser, M., Rabinowitz, J., Hoff, A. L., DeLisi, L. E., & Csernansky, J. G. (2004). Correlates of cognitive deficits in first episode schizophrenia. Schizophrenia Research, 68(1), 19.CrossRefGoogle ScholarPubMed
Higuchi, Y., Sumiyoshi, T., Seo, T., Miyanishi, T., Kawasaki, Y., & Suzuki, M. (2013). Mismatch negativity and cognitive performance for the prediction of psychosis in participants with at-risk mental state. PloS One, 8(1), e54080.CrossRefGoogle ScholarPubMed
Horváth, J., Czigler, I., Birkás, E., Winkler, I., & Gervai, J. (2009). Age-related differences in distraction and reorientation in an auditory task. Neurobiology of Aging, 30(7), 11571172.CrossRefGoogle Scholar
Javitt, D. C., Doneshka, P., Grochowski, S., & Ritter, W. (1995). Impaired mismatch negativity generation reflects widespread dysfunction of working memory in schizophrenia. Archives of General Psychiatry, 52(7), 550558.CrossRefGoogle ScholarPubMed
Javitt, D. C., Shelley, A.-M., & Ritter, W. (2000). Associated deficits in mismatch negativity generation and tone matching in schizophrenia. Clinical Neurophysiology, 111(10), 17331737.CrossRefGoogle ScholarPubMed
Jonas, K. L., Wenxuan, , Callahan, J., Ruggero, C., Clouson, S., Reichenberg, A., … Kotov, R. (2022). The course of general cognitive ability in psychotic disorders. JAMA Psychiatry, 79(7), 659666.CrossRefGoogle ScholarPubMed
Kaur, M., Battisti, R. A., Ward, P. B., Ahmed, A., Hickie, I. B., & Hermens, D. F. (2011). MMN/P3a deficits in first episode psychosis: Comparing schizophrenia-spectrum and affective-spectrum subgroups. Schizophrenia Research, 130(1–3), 203209.CrossRefGoogle ScholarPubMed
Kaur, M., Lagopoulos, J., Lee, R. S. C., Ward, P. B., Naismith, S. L., Hickie, I. B., & Hermens, D. F. (2013). Longitudinal associations between mismatch negativity and disability in early schizophrenia-and affective-spectrum disorders. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 46, 161169.CrossRefGoogle ScholarPubMed
Kendler, K. S., Karkowski-Shuman, L., O'Neill, F. A., Straub, R. E., MacLean, C. J., & Walsh, D. (1997). Resemblance of psychotic symptoms and syndromes in affected sibling pairs from the Irish study of high-density schizophrenia families: Evidence for possible etiologic heterogeneity. American Journal of Psychiatry, 154(2), 191198.Google ScholarPubMed
Kim, J. S., Kwon, Y. J., Lee, H. Y., Lee, H.-S., Kim, S., & Shim, S.-H. (2020). Mismatch negativity indices as a prognostic factor for remission in schizophrenia. Clinical Psychopharmacology and Neuroscience, 18(1), 127.CrossRefGoogle ScholarPubMed
Kim, M., Kim, S. N., Lee, S., Byun, M. S., Shin, K. S., Park, H. Y., … Kwon, J. S. (2014). Impaired mismatch negativity is associated with current functional status rather than genetic vulnerability to schizophrenia. Psychiatry Research: Neuroimaging, 222(1–2), 100106.CrossRefGoogle ScholarPubMed
Kotov, R., Fochtmann, L., Li, K., Tanenberg-Karant, M., Constantino, E. A., Rubinstein, J., … Carlson, G. (2017). Declining clinical course of psychotic disorders over the two decades following first hospitalization: Evidence from the Suffolk County Mental Health Project. American Journal of Psychiatry, 174(11), 10641074.CrossRefGoogle ScholarPubMed
Lavoie, S., Jack, B. N., Griffiths, O., Ando, A., Amminger, P., Couroupis, A., … Nelson, B. (2018). Impaired mismatch negativity to frequency deviants in individuals at ultra-high risk for psychosis, and preliminary evidence for further impairment with transition to psychosis. Schizophrenia Research, 191, 95100.CrossRefGoogle ScholarPubMed
Lepage, M., Bodnar, M., & Bowie, C. R. (2014). Neurocognition: Clinical and functional outcomes in schizophrenia. The Canadian Journal of Psychiatry, 59(1), 512.CrossRefGoogle ScholarPubMed
Light, G. A., & Braff, D. L. (2005a). Stability of mismatch negativity deficits and their relationship to functional impairments in chronic schizophrenia. American Journal of Psychiatry, 162(9), 17411743.CrossRefGoogle ScholarPubMed
Light, G. A., & Braff, D. L. (2005b). Mismatch negativity deficits are associated with poor functioning in schizophrenia patients. Archives of general psychiatry, 62(2), 127136.CrossRefGoogle ScholarPubMed
Light, G. A., & Näätänen, R. (2013). Mismatch negativity is a breakthrough biomarker for understanding and treating psychotic disorders. Proceedings of the National Academy of Sciences, 110(38), 1517515176.CrossRefGoogle ScholarPubMed
Light, G. A., Swerdlow, N. R., Rissling, A. J., Radant, A., Sugar, C. A., Sprock, J., … Braff, D. L. (2012). Characterization of neurophysiologic and neurocognitive biomarkers for use in genomic and clinical outcome studies of schizophrenia. PloS one, 7(7), e39434.CrossRefGoogle ScholarPubMed
Light, G. A., Swerdlow, N. R., Thomas, M. L., Calkins, M. E., Green, M. F., Greenwood, T. A., … Nuechterlein, K. H. (2015). Validation of mismatch negativity and P3a for use in multi-site studies of schizophrenia: Characterization of demographic, clinical, cognitive, and functional correlates in COGS-2. Schizophrenia Research, 163(1–3), 6372.CrossRefGoogle ScholarPubMed
Mathalon, D. H., Roach, B. J., & Ford, J. M. (2010). Automatic semantic priming abnormalities in schizophrenia. International Journal of Psychophysiology, 75(2), 157166.CrossRefGoogle ScholarPubMed
Mbewe, E., Haworth, A., Welham, J., Mubanga, D., Chazulwa, R., Zulu, M. M., … McGrath, J. (2006). Clinical and demographic features of treated first-episode psychotic disorders: A Zambian study. Schizophrenia Research, 86(1–3), 202207.CrossRefGoogle ScholarPubMed
McCarthy-Jones, S., Smailes, D., Corvin, A., Gill, M., Morris, D. W., Dinan, T. G., … Dudley, R. (2017). Occurrence and co-occurrence of hallucinations by modality in schizophrenia-spectrum disorders. Psychiatry Research, 252, 154160.CrossRefGoogle ScholarPubMed
McEvoy, L. K., Pellouchoud, E., Smith, M. E., & Gevins, A. (2001). Neurophysiological signals of working memory in normal aging. Cognitive Brain Research, 11(3), 363376.CrossRefGoogle ScholarPubMed
McGurk, S. R., & Meltzer, H. Y. (2000). The role of cognition in vocational functioning in schizophrenia. Schizophrenia Research, 45(3), 175184.CrossRefGoogle ScholarPubMed
McLoughlin, G., Makeig, S., & Tsuang, M. T. (2014). In search of biomarkers in psychiatry: EEG-based measures of brain function. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 165(2), 111121.CrossRefGoogle Scholar
Michie, P. T., Budd, T. W., Todd, J., Rock, D., Wichmann, H., Box, J., & Jablensky, A. V. (2000). Duration and frequency mismatch negativity in schizophrenia. Clinical Neurophysiology, 111(6), 10541065.CrossRefGoogle ScholarPubMed
Morriss, R., Vinjamuri, I., Faizal, M. A., Bolton, C. A., & McCarthy, J. P. (2013). Training to recognise the early signs of recurrence in schizophrenia. Cochrane Database of Systematic Reviews (2).CrossRefGoogle ScholarPubMed
Näätänen, R. (1995). The mismatch negativity: A powerful tool for cognitive neuroscience. Ear and Hearing, 16(1), 618.CrossRefGoogle ScholarPubMed
Näätänen, R., Kujala, T., Escera, C., Baldeweg, T., Kreegipuu, K., Carlson, S., & Ponton, C. (2012). The mismatch negativity (MMN)–a unique window to disturbed central auditory processing in ageing and different clinical conditions. Clinical Neurophysiology, 123(3), 424458.CrossRefGoogle ScholarPubMed
Näätänen, R., Kujala, T., Kreegipuu, K., Carlson, S., Escera, C., Baldeweg, T., … Ponton, C. (2011). The mismatch negativity: An index of cognitive decline in neuropsychiatric and neurological diseases and in ageing. Brain Topography, 134(12), 14312.Google ScholarPubMed
Näätänen, R., Shiga, T., Asano, S., & Yabe, H. (2015). Mismatch negativity (MMN) deficiency: A break-through biomarker in predicting psychosis onset. International Journal of Psychophysiology, 95(3), 338344.CrossRefGoogle ScholarPubMed
Nazimek, J., Hunter, M., & Woodruff, P. (2012). Auditory hallucinations: Expectation–perception model. Medical Hypotheses, 78(6), 802810.CrossRefGoogle ScholarPubMed
Novick, D., Haro, J. M., Suarez, D., Perez, V., Dittmann, R. W., & Haddad, P. M. (2010). Predictors and clinical consequences of non-adherence with antipsychotic medication in the outpatient treatment of schizophrenia. Psychiatry Research, 176(2–3), 109113.CrossRefGoogle ScholarPubMed
Nuechterlein, K. H., Ventura, J., Subotnik, K. L., & Bartzokis, G. (2014). The early longitudinal course of cognitive deficits in schizophrenia. The Journal of Clinical Psychiatry, 75(suppl 2), 5298.CrossRefGoogle ScholarPubMed
O'Leary, D. S., Flaum, M., Kesler, M. L., Flashman, L. A., Arndt, S., & Andreasen, N. C. (2000). Cognitive correlates of the negative, disorganized, and psychotic symptom dimensions of schizophrenia. The Journal of Neuropsychiatry and Clinical Neurosciences, 12(1), 415.CrossRefGoogle ScholarPubMed
Olfson, M., Mechanic, D., Hansell, S., Boyer, C. A., & Walkup, J. (1999). Prediction of homelessness within three months of discharge among inpatients with schizophrenia. Psychiatric Services, 50(5), 667673.CrossRefGoogle ScholarPubMed
Patrick, C. J., Venables, N. C., Yancey, J. R., Hicks, B. M., Nelson, L. D., & Kramer, M. D. (2013). A construct-network approach to bridging diagnostic and physiological domains: Application to assessment of externalizing psychopathology. Journal of Abnormal Psychology, 122, 902916. http://dx.doi.org/10.1037/a0032807.CrossRefGoogle ScholarPubMed
Paulus, M. P., & Thompson, W. K. (2019). The challenges and opportunities of small effects: The new normal in academic psychiatry. Journal of the American Medical Association Psychiatry, 76, 353354. http://dx.doi.org/10.1001/jamapsychiatry.2018.4540.Google ScholarPubMed
Perez, V. B., Woods, S. W., Roach, B. J., Ford, J. M., McGlashan, T. H., Srihari, V. H., & Mathalon, D. H. (2014). Automatic auditory processing deficits in schizophrenia and clinical high-risk patients: Forecasting psychosis risk with mismatch negativity. Biological Psychiatry, 75(6), 459469.CrossRefGoogle ScholarPubMed
Polich, J. (1997). EEG and ERP assessment of normal aging. Electroencephalography and Clinical Neurophysiology/Evoked Potentials Section, 104(3), 244256.CrossRefGoogle ScholarPubMed
Rajapakse, T., Garcia-Rosales, A., Weerawardene, S., Cotton, S., & Fraser, R. (2011). Themes of delusions and hallucinations in first-episode psychosis. Early Intervention in Psychiatry, 5(3), 254258.CrossRefGoogle ScholarPubMed
Reichenberg, A., Caspi, A., Harrington, H., Houts, R., Keefe, R. S., Murray, R. M., … Moffitt, T. E. (2010). Static and dynamic cognitive deficits in childhood preceding adult schizophrenia: A 30-year study. American Journal of Psychiatry, 167(2), 160169.CrossRefGoogle ScholarPubMed
Reitan, R. M. (1955). The relation of the trail making test to organic brain damage. Journal of Consulting Psychology, 19(5), 393.CrossRefGoogle ScholarPubMed
Roach, B. J., Carrión, R. E., Hamilton, H. K., Bachman, P., Belger, A., Duncan, E., … Addington, J. (2020a). Reliability of mismatch negativity event-related potentials in a multisite, traveling participants study. Clinical Neurophysiology, 131(12), 28992909.CrossRefGoogle Scholar
Roach, B. J., Hamilton, H. K., Bachman, P., Belger, A., Carrión, R. E., Duncan, E., … Niznikiewicz, M. (2020b). Stability of mismatch negativity event-related potentials in a multisite study. International Journal of Methods in Psychiatric Research, 29(2), e1819.CrossRefGoogle Scholar
Rosburg, T., & Kreitschmann-Andermahr, I. (2016). The effects of ketamine on the mismatch negativity (MMN) in humans–a meta-analysis. Clinical Neurophysiology, 127(2), 13871394.CrossRefGoogle ScholarPubMed
Rosseel, Y. (2012). Lavaan: An R package for structural equation modeling. Journal of Statistical Software, 48(2), 136. doi: 10.18637/jss.v048.i02CrossRefGoogle Scholar
Ruff, R., Light, R., Parker, S., & Levin, H. (1996). Benton controlled oral word association test: Reliability and updated norms. Archives of Clinical Neuropsychology, 11(4), 329338.CrossRefGoogle ScholarPubMed
Salisbury, D. F., Kuroki, N., Kasai, K., Shenton, M. E., & McCarley, R. W. (2007). Progressive and interrelated functional and structural evidence of post-onset brain reduction in schizophrenia. Archives of General Psychiatry, 64(5), 521529.CrossRefGoogle ScholarPubMed
Sehatpour, P., Avissar, M., Kantrowitz, J. T., Corcoran, C. M., De Baun, H. M., Patel, G. H., … Silipo, G. (2020). Deficits in pre-attentive processing of spatial location and negative symptoms in participants at clinical high risk for schizophrenia. Frontiers in Psychiatry, 11, 629144.CrossRefGoogle Scholar
Shaikh, M., Valmaggia, L., Broome, M. R., Dutt, A., Lappin, J., Day, F., … Bramon, E. (2012). Reduced mismatch negativity predates the onset of psychosis. Schizophrenia Research, 134(1), 4248.CrossRefGoogle ScholarPubMed
Sheffield, J. M., Karcher, N. R., & Barch, D. M. (2018). Cognitive deficits in psychotic disorders: A lifespan perspective. Neuropsychology Review, 28(4), 509533.CrossRefGoogle ScholarPubMed
Shinozaki, N., Yabe, H., Sato, Y., Hiruma, T., Sutoh, T., Nashida, T., … Kaneko, S. (2002). The difference in mismatch negativity between the acute and post-acute phase of schizophrenia. Biological Psychology, 59(2), 105119.CrossRefGoogle ScholarPubMed
Silverstein, A. (1982). Factor structure of the Wechsler adult intelligence scale–revised. Journal of Consulting and Clinical Psychology, 50(5), 661.CrossRefGoogle Scholar
Sinkkonen, J., & Tervaniemi, M. (2000). Towards optimal recording and analysis of the mismatch negativity. Audiology and Neurotology, 5(3–4), 235246.CrossRefGoogle ScholarPubMed
Sterzer, P., Adams, R. A., Fletcher, P., Frith, C., Lawrie, S. M., Muckli, L., … Corlett, P. R. (2018). The predictive coding account of psychosis. Biological Psychiatry, 84(9), 634643.CrossRefGoogle ScholarPubMed
Tandon, R., Nasrallah, H. A., & Keshavan, M. S. (2009). Schizophrenia, “just the facts” 4. Clinical features and conceptualization. Schizophrenia Research, 110(1–3), 123.CrossRefGoogle Scholar
Tateno, T., Higuchi, Y., Nakajima, S., Sasabayashi, D., Nakamura, M., Ueno, M., … Sumiyoshi, T. (2021). Features of duration mismatch negativity around the onset of overt psychotic disorders: A longitudinal study. Cerebral Cortex, 31(5), 24162424.CrossRefGoogle ScholarPubMed
Team, R. C. (2022). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/.Google Scholar
Theodoridou, A., & Rössler, W. (2010). Disease burden and disability-adjusted life years due to schizophrenia and psychotic disorders. In Preedy, V. R. & Watson, R. R. (Eds.), Handbook of disease burdens and quality of life measures (pp. 14931507). New York, US: Springer. https://doi.org/10.1007/978-0-387-78665-0_87CrossRefGoogle Scholar
Trenerry, M. R., Crosson, B., DeBoe, J., & Leber, W. (1989). Stroop neuropsychological screening test. Odessa, FL: Psychological Assessment Resources.Google Scholar
Umbricht, D., Koller, R., Vollenweider, F. X., & Schmid, L. (2002). Mismatch negativity predicts psychotic experiences induced by NMDA receptor antagonist in healthy volunteers. Biological Psychiatry, 51(5), 400406.CrossRefGoogle ScholarPubMed
Umbricht, D., & Krljes, S. (2005). Mismatch negativity in schizophrenia: A meta-analysis. Schizophrenia Research, 76(1), 123.CrossRefGoogle ScholarPubMed
Velthorst, E., Fett, A.-K. J., Reichenberg, A., Perlman, G., van Os, J., Bromet, E. J., & Kotov, R. (2017). The 20-year longitudinal trajectories of social functioning in individuals with psychotic disorders. American Journal of Psychiatry, 174(11), 10751085.CrossRefGoogle ScholarPubMed
Wacongne, C. (2016). A predictive coding account of MMN reduction in schizophrenia. Biological psychology, 116, 6874.CrossRefGoogle ScholarPubMed
Wechsler, D. (2012). Wechsler preschool and primary scale of intelligence (4th ed.). San Antonio, TX: The Psychological Corporation.Google Scholar
Weinberg, A., & Hajcak, G. (2011). Longer term test–retest reliability of error-related brain activity. Psychophysiology, 48(10), 14201425.CrossRefGoogle ScholarPubMed
Wickham, H. (2011). ggplot2. Wiley Interdisciplinary Reviews: Computational Statistics, 3(2), 180185.CrossRefGoogle Scholar
Wickham, H., Bryan, J., Kalicinski, M., Valery, K., Leitienne, C., Colbert, B., … Bryan, M. J. (2019). Package ‘readxl’.Google Scholar
Wynn, J. K., Sugar, C., Horan, W. P., Kern, R., & Green, M. F. (2010). Mismatch negativity, social cognition, and functioning in schizophrenia patients. Biological Psychiatry, 67(10), 940947.CrossRefGoogle ScholarPubMed
Supplementary material: Image

Donaldson et al. supplementary material

Donaldson et al. supplementary material 1

Download Donaldson et al. supplementary material(Image)
Image 544.6 KB
Supplementary material: Image

Donaldson et al. supplementary material

Donaldson et al. supplementary material 2

Download Donaldson et al. supplementary material(Image)
Image 156.5 KB
Supplementary material: File

Donaldson et al. supplementary material

Donaldson et al. supplementary material 3

Download Donaldson et al. supplementary material(File)
File 31.1 KB