Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-27T04:43:13.207Z Has data issue: false hasContentIssue false

Neural transplants as a treatment for Alzheimer's disease?12

Published online by Cambridge University Press:  09 July 2009

Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Editorial
Copyright
Copyright © Cambridge University Press 1991

References

Arendash, G. W., Millard, W. J., Dunn, A. J. & Meyer, E. M. (1987). Long-term neuropathological and neurochemical effects of nucleus basalis lesions in the rat. Science 238, 952956.CrossRefGoogle ScholarPubMed
Azmitia, E. C., Perlow, M. J., Brennan, M. J. & Lauder, J. M. (1981). Fetal raphe and hippocampal transplants in adult and aged C57BL/6N mice: an immunohistochemical study. Brain Research Bulletin 7, 703710.CrossRefGoogle Scholar
Bartus, R. T., Dean, R. L., Beer, B. & Lippa, A. S. (1982). The cholinergic hypothesis of geriatric memory dysfunction. Science 217, 408417.CrossRefGoogle ScholarPubMed
Bermudez-Rattoni, F., Fernandez, J., Sanchez, M. A., Aguilar-Roblero, R. & Drucker-Colin, R. (1987). Fetal brain transplants induce recuperation of taste aversion learning. Brain Research 416, 147152.CrossRefGoogle ScholarPubMed
Björklund, A., Lindvall, O., Isacson, O., Brundin, P., Wictorin, K., Strecker, R. E., Clarke, D. J. & Dunnett, S. B. (1987). Mechanisms of action of intracerebral neural implants: studies on nigral and striatal grafts to the lesioned striatum. Trends in Neuroscience 10, 509516.CrossRefGoogle Scholar
Clarke, D. J., Gage, F. H., Nilsson, O. & Björklund, A. (1986). Grafted septal neurons form cholinergic synaptic connections in the dentate gyrus of behaviorally impaired aged rats. Journal of Comparative Neurology 252, 483492.CrossRefGoogle ScholarPubMed
Collier, T. J., Gash, D. M. & Sladek, J. R. (1988). Transplantation of norepinephrine neurons into aged rats improves performance of a learned task. Brain Research 448, 7787.CrossRefGoogle ScholarPubMed
Coyle, J. T., Price, D. L. & DeLong, M. R. (1983). Alzheimer's disease: a disorder of cortical cholinergic innervation. Science 219, 11841190.CrossRefGoogle ScholarPubMed
Daniloff, J. K., Bodony, R. P., Low, W. C. & Wells, J. (1985). Cross-species embryonic septal transplants: restoration of conditioned learning behavior. Brain Research 346, 176180.CrossRefGoogle ScholarPubMed
Dunnett, S. B. (1990 a). Neural transplantation in animal models of dementia. European Journal of Neuroscience 2, 567587.CrossRefGoogle ScholarPubMed
Dunnett, S. B. (1990 b). Role of prefrontal cortex and striatal output systems in short-term memory deficits associated with ageing, basal forebrain lesions, and cholinergic-rich grafts. Canadian Journal of Psychology 44, 210232.CrossRefGoogle ScholarPubMed
Dunnett, S. B. & Barth, T. W. (1991). Animal models of dementia (with an emphasis on cortical cholinergic systems). In Animal Models in Psychopharmacology (ed. Willner, P.), pp. 359418. Cambridge University Press: Cambridge.Google Scholar
Dunnett, S. B. & Björklund, A. (1987). Mechanisms of function of neural grafts in the adult mammalian brain. Journal of Experimental Biology 132, 265289.CrossRefGoogle ScholarPubMed
Dunnett, S. B., Low, W. C., Iversen, S. D., Stenevi, U. & Björklund, A. (1982). Septal transplants restore maze learning in rats with fimbria-fornix lesions. Brain Research 251, 335348.CrossRefGoogle Scholar
Dunnett, S. B., Toniolo, G., Fine, A., Ryan, C. N. Björklund, A. & Iversen, S. D. (1985). Transplantation of embryonic ventral forebrain neurons to the neocortex of rats with lesions of nucleus basalts magnocellularis. II. Sensorimotor and learning impairments. Neuroscience 16, 787797.CrossRefGoogle Scholar
Dunnett, S. B., Ryan, C. N., Levin, P. D., Reynolds, M. & Bunch, S. T. (1987). Functional consequences of embryonic neocortex transplanted to rats with prefrontal cortex lesions. Behavioral Neuroscience 101, 489503.CrossRefGoogle ScholarPubMed
Dunnett, S. B., Badman, F., Rogers, D. C., Evenden, J. L. & Iversen, S. D. (1988). Cholinergic grafts in the neocortex or hippocampus of aged rats: reduction of delay-dependent deficits in the delayed non-matching to position task. Experimental Neurology 102, 5764.CrossRefGoogle ScholarPubMed
Ernfors, P., Ebendal, T., Olson, L., Mouton, P., Strömberg, I. & Persson, H. (1989). A cell line producing recombinant nerve growth factor evokes growth responses in intrinsic and grafted central cholinergic neurons. Proceedings of the National Academy of Science of the USA 86, 47564760.CrossRefGoogle ScholarPubMed
Escobar, M., Fernandez, J., Guevara-Aguilar, R. & Bermudez-Rattoni, F. (1989). Fetal brain grafts induce recovery of learning deficits and connectivity in rats with gustatory neocortex lesions. Brain Research 478, 368374.CrossRefGoogle Scholar
Fine, A., Dunnett, S. B., Björklund, A. & Iversen, S. D. (1985). Cholinergic ventral forebrain grafts into the neocortex improve passive avoidance memory in a rat model of Alzheimer's disease. Proceedings of the National Academy of Science of the USA 82, 52275230.CrossRefGoogle Scholar
Fischer, W., Wictorin, K., Björklund, A., Williams, L. R., Varon, S. & Gage, F. H. (1987). Amelioration of cholinergic neuron atrophy and spatial memory impairment in aged rats by nerve growth factor. Nature 329, 6568.CrossRefGoogle ScholarPubMed
Freed, W. J., Cannon-Spoor, H. E. & Krauthamer, E. (1985). Factors influencing the efficacy of adrenal medulla and embryonic substantia nigra grafts. In Neural Grafting in the Mammalian CNS (ed. Björklund, A. and Stenevi, U.), pp. 491504. Elsevier: Amsterdam.Google Scholar
Gage, F. H. & Björklund, A. (1986). Cholinergic septal grafts into the hippocampal formation improve spatial learning and memory in aged rats by an atropine-sensitive mechanism. Journal of Neuroscience 6, 28372847.CrossRefGoogle ScholarPubMed
Gage, F. H., Björklund, A., Stenevi, U. & Dunnett, S. B. (1983 a). Intracerebral grafting of neuronal cell suspensions. VIII. Survival and growth of implants of nigral and septal cell suspensions in intact brains of aged rats. Acta Physiologica Scandinavica supplementum 522, 6775.Google ScholarPubMed
Gage, F. H., Dunnett, S. B., Stenevi, U. & Björklund, A. (1983 b). Aged rats: recovery of motor impairments by intrastriatal nigral grafts. Science 221, 966969.CrossRefGoogle ScholarPubMed
Gage, F. H., Björklund, A., Stenevi, U. & Dunnett, S. B. (1983 c). Intracerebral grafting in the aged brain. In Aging of the Brain (ed. Gispen, W. H. and Traber, B. J.), pp. 125137. Elsevier: Amsterdam.Google Scholar
Gage, F. H., Björklund, A., Stenevi, U., Dunnett, S. B. & Kelly, P. A. T. (1984). Intrahippocampal septal grafts ameliorate learning deficits in aged rats. Science 225, 533536.CrossRefGoogle Scholar
Gage, F. H., Fisher, L. J., Jinnah, J. H. A., Rosenberg, M. B., Tuszynski, M. & Friedmann, T. (1990). Grafting genetically modified cells to the brain: conceptual and technical issues. Progress in Brain Research 82, 110.CrossRefGoogle Scholar
Hansen, J. T., Fiandaca, M. S., Kordower, J. H., Notter, M. F. D. & Gash, D. M. (1990). Striatal adrenal medulla/sural nerve cografts in hemiparkinsonian monkeys. Progress in Brain Research 82, 573580.CrossRefGoogle ScholarPubMed
Haun, F., Rothblat, L. A. & Cunningham, T. J. (1985). Visual cortex transplants in rats restore normal learning of a difficult visual pattern discrimination. Investigations in Ophthalmology and Visual Science 26, suppl. 3, 288.Google Scholar
Hefti, F. (1983). Is Alzheimer's disease caused by a lack of nerve growth factor? Annals of Neurology 13, 109110.CrossRefGoogle ScholarPubMed
Hefti, F. (1986). Nerve growth factor promotes survival of septal cholinergic neurons after fimbria transections. Journal of Neuroscience 6, 21552162.CrossRefGoogle Scholar
Hefti, F. & Weiner, W. J. (1986). Nerve growth factor and Alzheimer's disease. Annals of Neurology 20, 275281.CrossRefGoogle ScholarPubMed
Ikegami, S., Nihonmatsu, I., Hatanaka, H., Takei, N. & Kawamura, H. (1989). Transplantation of septal cholinergic neurons to the hippocampus improves memory impairments of spatial learning in rats treated with AF64A. Brain Research 496, 321326.CrossRefGoogle Scholar
Kesslak, J. P., Brown, L., Steichen, C. & Cotman, C. W. (1986 a). Adult and embryonic frontal cortex transplants after frontal cortex ablation enhance recovery on a reinforced alternation task. Experimental Neurology 94, 615626.CrossRefGoogle ScholarPubMed
Kesslak, J. P., Nieto-Sampedro, M., Globus, J. & Cotman, C. W. (1986 b). Transplants of purified astrocytes promote behavioural recovery after frontal cortex ablation. Experimental Neurology 92, 377390.CrossRefGoogle ScholarPubMed
Kolb, B., Reynolds, B. & Fantie, B. (1988). Frontal cortex grafts have opposite effects at different postoperative recovery times. Behavioral and Neural Biology 50, 193206.CrossRefGoogle ScholarPubMed
Kromer, L. F. (1987). Nerve growth factor treatment after brain injury prevents neuronal death. Science 235, 214216.CrossRefGoogle ScholarPubMed
Labbe, R., Firl, A., Mufson, E. J. & Stein, D. G. (1983). Fetal brain transplants: reduction of cognitive deficits in rats with frontal cortex lesions. Science 221, 470472.CrossRefGoogle ScholarPubMed
Lindvall, O., Brundin, P., Widner, H., Rehncrona, S., Gustavii, B., Frackowiak, R., Leenders, K. L., Sawle, G., Rothwell, J. C., Marsden, C. D. & Björklund, A. (1990). Grafts of fetal dopamine neurons survive and improve motor function in Parkinson's disease. Science 247 574577.CrossRefGoogle ScholarPubMed
Low, W. C., Lewis, P. R., Bunch, S. T., Dunnett, S. B., Thomas, S. T., Iversen, S. D., Björklund, A. & Stenevi, U. (1982). Functional recovery following neural transplantation of embryonic septal nuclei in adult rats with scptohippocampal lesions. Nature 300, 260262.CrossRefGoogle ScholarPubMed
Nilsson, O. G., Shapiro, M. L., Olton, D. S., Gage, F. H. & Björklund, A. (1987). Spatial learning and memory following fimbria-fornix transection and grafting of fetal septal neurons to the hippocampus. Experimental Brain Research 67, 195215.CrossRefGoogle ScholarPubMed
Nilsson, O. G., Brundin, P. & Björklund, A. (1990). Amelioration of spatial memory impairment by intrahippocampal grafts of mixed septal and raphe tissue in rats with combined cholinergic and serotonergic denervation of the forebrain. Brain ResearchCrossRefGoogle ScholarPubMed
Olson, L., Ayer-LeLievre, C., Ebendal, T., Eriksdotter-Nilsson, M., Ernfors, P., Henschen, A., Hoffer, B., Giacobini, M. B., Mouton, P., Palmer, M., Persson, H., Sara, V., Strömberg, I. & Wetmore, C. (1990). Grafts, growth factors, and grafts that make growth factors. Progress in Brain Research 82, 5566.CrossRefGoogle ScholarPubMed
Richter-Levin, G. & Segal, M. (1989). Raphe cells grafted into the hippocampus can ameliorate spatial memory deficits in rats with combined serotonergic/cholinergic deficiencies. Brain Research 478, 184186.CrossRefGoogle ScholarPubMed
Rosenberg, M. B., Friedmann, T., Robinson, R. C., Tuszynski, M., Wolff, J. A., Breakefield, X. O. & Gage, F. H. (1988). Grafting of genetically modified cells to the damaged brain: restorative effects of NGF expression. Science 242, 15751578.CrossRefGoogle Scholar
Segal, M., Greenberger, V. & Milgram, N. W. (1987). A functional analysis of connections between grafted septal neurons and host hippocampus. Progress in Brain Research 71, 349357.CrossRefGoogle ScholarPubMed
Sinden, J. D., Allen, Y. S., Rawlins, J. N. P. & Gray, J. A. (1990). The effects of ibotenic acid lesions of the nucleus basalis and cholinergic-rich neural transplants on win-stay/lose-shift and winshift/lose-stay performance in the rat. Bahavioural Brain Research 36, 229249.CrossRefGoogle Scholar
Sofroniew, M. W., Pearson, R. C. A., Eckenstein, F., Cuello, A. C. & Powell, T. P. S. (1983). Retrograde changes in cholinergic neurons in the basal nucleus of the forebrain of the rat following cortical damage. Brain Research 289, 370374.CrossRefGoogle ScholarPubMed
Sofroniew, M. V., Isacson, O. & Björklund, A. (1986). Cortical grafts prevent atrophy of cholinergic basal nucleus neurons induced by excitotoxic cortical damage. Brain Research 378, 409415.CrossRefGoogle ScholarPubMed
Springer, J. E., Collier, T. J., Sladek, J. R. & Loy, R. (1988). Transplantation of male mouse submaxillary gland increases survival of axotomised basal forebrain neurons. Journal of Neuroscience Research 19, 291296.CrossRefGoogle Scholar
Stein, D. G. (1987). Transplant-induced functional recovery without specific neuronal connections. Progress in Research, American Paralysis Association 18, 45.Google Scholar
Stein, D. G., Labbe, R., Attella, M. J. & Rakowsky, H. A. (1985). Fetal brain tissue transplants reduce visual deficits in adult rats with bilateral lesions of the occipital cortex. Behavioral and Neural Biology 44, 266277.CrossRefGoogle ScholarPubMed
Stein, D. G., Palatucci, C., Kahn, D. & Labbe, R. (1988). Temporal factors influence recovery of function after embryonic brain tissue transplants in adult rats with frontal cortex lesions. Behavioural Neuroscience 102, 260267.CrossRefGoogle ScholarPubMed
Strömberg, I., Herrera-Marschitz, M., Ungerstedt, U., Ebendal, T. & Olsen, L. (1985). Chronic implants of chromaffin tissue into the dopamine-denervated striatum. Effects of NGF on graft survival, fiber growth and rotational behavior. Experimental Brain Research 60, 335349.CrossRefGoogle ScholarPubMed
Terry, R. D., Peck, A., DeTeresa, T., Schechter, R. & Haroupian, D. S. (1981). Some morphometric aspects of the brain in senile dementia of the Alzheimer type. Annals of Neurology 10, 184192.CrossRefGoogle ScholarPubMed
Thal, L. J., Mandel, R. J., Terry, R. D., Buzsaki, G. & Gage, F. H. (1990). Nucleus basalis lesions fail to induce senile plaques in the rat. Experimental Neurology 108, 8890.CrossRefGoogle ScholarPubMed
Tomlinson, B. E., Blessed, G. & Roth, M. (1968). Observations on the brains of non-demented old people. Journal of Neurological Science 7, 331356.CrossRefGoogle ScholarPubMed
Tomlinson, B. E., Blessed, G. & Roth, M. (1970). Observations on the brains of demented old people. Journal of Neurological Science 11, 205242.CrossRefGoogle ScholarPubMed
Watts, R. L., Bakay, R. A. E., Herring, C. J., Sweeney, K. M., Colbassani, H. J., Mandir, A., Byrd, L. D. & Iuvone, P. M. (1990). Preliminary report on adrenal medullary grafting and co-grafting with sural nerve in the treatment of hemiparkinson monkeys. Progress in Brain Research 82, 581591.CrossRefGoogle Scholar
Williams, L. R., Varon, S., Peterson, G. M., Wictorin, K., Fischer, W., Björklund, A. & Gage, F. H. (1986). Continuous infusion of nerve growth factor prevents basal forebrain neuronal death after fimbria fornix transection. Proceedings of the National Academy of Science of the USA 83, 92319235.CrossRefGoogle ScholarPubMed