Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-10T05:23:48.683Z Has data issue: false hasContentIssue false

Shared genetic architecture across psychiatric disorders

Published online by Cambridge University Press:  17 March 2021

Andrew D. Grotzinger*
Affiliation:
Department of Psychology, University of Texas at Austin, Austin, TX, USA Psychiatric and Neurodevelopmental Genetics Unit (PNGU) and the Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
*
Author for correspondence: Andrew D. Grotzinger, E-mail: agrotzin@utexas.edu

Abstract

Psychiatric disorders overlap substantially at the genetic level, with family-based methods long pointing toward transdiagnostic risk pathways. Psychiatric genomics has progressed rapidly in the last decade, shedding light on the biological makeup of cross-disorder risk at multiple levels of analysis. Over a hundred genetic variants have been identified that affect multiple disorders, with many more to be uncovered as sample sizes continue to grow. Cross-disorder mechanistic studies build on these findings to cluster transdiagnostic variants into meaningful categories, including in what tissues or when in development these variants are expressed. At the upper-most level, methods have been developed to estimate the overall shared genetic signal across pairs of traits (i.e. single-nucleotide polymorphism-based genetic correlations) and subsequently model these relationships to identify overarching, genomic risk factors. These factors can subsequently be associated with external traits (e.g. functional imaging phenotypes) to begin to understand the makeup of these transdiagnostic risk factors. As psychiatric genomic efforts continue to expand, we can begin to gain even greater insight by including more fine-grained phenotypes (i.e. symptom-level data) and explicitly considering the environment. The culmination of these efforts will help to inform bottom-up revisions of our current nosology.

Type
Invited Review
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agerbo, E., Sullivan, P. F., Vilhjalmsson, B. J., Pedersen, C. B., Mors, O., Børglum, A. D., … Ripke, S. (2015). Polygenic risk score, parental socioeconomic status, family history of psychiatric disorders, and the risk for schizophrenia: A Danish population-based study and meta-analysis. JAMA Psychiatry, 72(7), 635641.CrossRefGoogle ScholarPubMed
Allardyce, J., Leonenko, G., Hamshere, M., Pardiñas, A. F., Forty, L., Knott, S., … Escott-Price, V. (2018). Association between schizophrenia-related polygenic liability and the occurrence and level of mood-incongruent psychotic symptoms in bipolar disorder. JAMA Psychiatry, 75(1), 2835.CrossRefGoogle ScholarPubMed
All of Us Research Program Investigators (2019). The ‘All of Us’ research program. New England Journal of Medicine, 381(7), 668676.CrossRefGoogle Scholar
Anttila, V., Bulik-Sullivan, B., Finucane, H. K., Walters, R. K., Bras, J., Duncan, L., … Neale, B. M. (2018). Analysis of shared heritability in common disorders of the brain. Science (New York, N.Y.), 360(6395), eaap8757.Google ScholarPubMed
Baselmans, B. M., Yengo, L., Van Rheenen, W., & Wray, N. R. (2020). Risk in relatives, heritability, SNP-based heritability and genetic correlations in psychiatric disorders: A review. Biological Psychiatry, 89, 1119.CrossRefGoogle ScholarPubMed
Bendriem, R. M., & Ross, M. E. (2017). Wiring the human brain: A user's handbook. Neuron, 95(3), 482485.CrossRefGoogle ScholarPubMed
Bergen, S. E., & Sullivan, P. F. (2018). National-scale precision medicine for psychiatric disorders in Sweden. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 177(7), 630634.CrossRefGoogle ScholarPubMed
Border, R., Johnson, E. C., Evans, L. M., Smolen, A., Berley, N., Sullivan, P. F., & Keller, M. C. (2019). No support for historical candidate gene or candidate gene-by-interaction hypotheses for major depression across multiple large samples. American Journal of Psychiatry, 176(5), 376387.CrossRefGoogle ScholarPubMed
Bromet, E. J., Kotov, R., Fochtmann, L. J., Carlson, G. A., Tanenberg-Karant, M., Ruggero, C., & Chang, S.-W. (2011). Diagnostic shifts during the decade following first admission for psychosis. American Journal of Psychiatry, 168(11), 11861194.CrossRefGoogle Scholar
Bulik-Sullivan, B., Finucane, H. K., Anttila, V., Gusev, A., Day, F. R., Loh, P., … Neale, B. M. (2015a). An atlas of genetic correlations across human diseases and traits. Nature Genetics, 47(11), 12361241.CrossRefGoogle Scholar
Bulik-Sullivan, B. K., Loh, P. R., Finucane, H. K., Ripke, S., Yang, J., Patterson, N., … Neale, B. M. (2015b). LD score regression distinguishes confounding from polygenicity in genome-wide association studies. Nature Genetics, 47(3), 291295.CrossRefGoogle Scholar
Caspi, A., Houts, R. M., Ambler, A., Danese, A., Elliott, M. L., Hariri, A., … Rasmussen, L. J. H. (2020). Longitudinal assessment of mental health disorders and comorbidities across 4 decades among participants in the Dunedin birth cohort study. JAMA Network Open, 3(4), e203221.CrossRefGoogle ScholarPubMed
Caspi, A., & Moffitt, T. E. (2018). All for one and one for all: Mental disorders in one dimension. American Journal of Psychiatry, 175, 831844. http://doi.org/10.1176/appi.ajp.2018.17121383.CrossRefGoogle ScholarPubMed
Cotsapas, C., & Hafler, D. A. (2013). Immune-mediated disease genetics: The shared basis of pathogenesis. Trends in Immunology, 34(1), 2226.CrossRefGoogle ScholarPubMed
Craddock, N., & Owen, M. J. (2005). The beginning of the end for the Kraepelinian dichotomy. The British Journal of Psychiatry, 186(5), 364366.CrossRefGoogle ScholarPubMed
Cross-Disorder Working Group of the Psychiatric Genomics Consortium (2013). Identification of risk loci with shared effects on five major psychiatric disorders: A genome-wide analysis. The Lancet, 381(9875), 13711379.CrossRefGoogle Scholar
Dean, K., Stevens, H., Mortensen, P. B., Murray, R. M., Walsh, E., & Pedersen, C. B. (2010). Full spectrum of psychiatric outcomes among offspring with parental history of mental disorder. Archives of General Psychiatry, 67(8), 822829.CrossRefGoogle ScholarPubMed
Gandal, M. J., Leppa, V., Won, H., Parikshak, N. N., & Geschwind, D. H. (2016). The road to precision psychiatry: Translating genetics into disease mechanisms. Nature Neuroscience, 19(11), 13971407.CrossRefGoogle ScholarPubMed
Gottesman, O., Kuivaniemi, H., Tromp, G., Faucett, W. A., Li, R., Manolio, T. A., … Brilliant, M. (2013). The electronic medical records and genomics (eMERGE) network: Past, present, and future. Genetics in Medicine, 15(10), 761771.CrossRefGoogle ScholarPubMed
Grotzinger, A. D., Mallard, T. T., Akingbuwa, W. A., Ip, H. F., Adams, M. J., Lewis, C. M., & …Nivard, M. G. (2020). Genetic Architecture of 11 Major Psychiatric Disorders at Biobehavioral, Functional Genomic, and Molecular Genetic Levels of Analysis. medRxiv.10.1101/2020.09.22.20196089CrossRefGoogle Scholar
Grotzinger, A. D., Rhemtulla, M., de Vlaming, R., Ritchie, S. J., Mallard, T. T., Hill, W. D., … Tucker-Drob, E. M. (2019). Genomic structural equation modelling provides insights into the multivariate genetic architecture of complex traits. Nature Human Behaviour, 3(5), 513525.CrossRefGoogle ScholarPubMed
Hamada, N., Ito, H., Iwamoto, I., Morishita, R., Tabata, H., & Nagata, K. I. (2015). Role of the cytoplasmic isoform of RBFOX1/A2BP1 in establishing the architecture of the developing cerebral cortex. Molecular Autism, 6(1), 113.CrossRefGoogle ScholarPubMed
Han, B., Pouget, J. G., Slowikowski, K., Stahl, E., Lee, C. H., Diogo, D., … Raychaudhuri, S. (2016). A method to decipher pleiotropy by detecting underlying heterogeneity driven by hidden subgroups applied to autoimmune and neuropsychiatric diseases. Nature Genetics, 48(7), 803810.CrossRefGoogle ScholarPubMed
Holland, D., Frei, O., Desikan, R., Fan, C. C., Shadrin, A. A., Smeland, O. B., … Dale, A. M. (2020). Beyond SNP heritability: Polygenicity and discoverability of phenotypes estimated with a univariate Gaussian mixture model. PLoS Genetics, 16(5), e1008612.CrossRefGoogle ScholarPubMed
Howard, D. M., Adams, M. J., Clarke, T.-K., Hafferty, J. D., Gibson, J., Shirali, M., … McIntosh, A. M. (2019). Genome-wide meta-analysis of depression identifies 102 independent variants and highlights the importance of the prefrontal brain regions. Nature Neuroscience, 22(3), 343.CrossRefGoogle ScholarPubMed
Howard, D. M., Folkersen, L., Coleman, J. R., Adams, M. J., Glanville, K., Werge, T., … McIntosh, A. M. (2020). Genetic stratification of depression in UK Biobank. Translational Psychiatry, 10(1), 18.CrossRefGoogle ScholarPubMed
Insel, T. R., & Cuthbert, B. N. (2009). Endophenotypes: Bridging genomic complexity and disorder heterogeneity. Biological Psychiatry, 66(11), 988989.CrossRefGoogle ScholarPubMed
Kendler, K. S. (2009). An historical framework for psychiatric nosology. Psychological Medicine, 39(12), 19351941.CrossRefGoogle ScholarPubMed
Kendler, K. S. (2020). The prehistory of psychiatric genetics: 1780–1910. American Journal of Psychiatry, appi-ajp.Google ScholarPubMed
Kendler, K. S., Aggen, S. H., Knudsen, G. P., Røysamb, E., Neale, M. C., & Reichborn-Kjennerud, T. (2011). The structure of genetic and environmental risk factors for syndromal and subsyndromal common DSM-IV axis I and all axis II disorders. American Journal of Psychiatry, 168(1), 2939.CrossRefGoogle ScholarPubMed
Kendler, K. S., Chatzinakos, C., & Bacanu, S. A. (2020). The impact on estimations of genetic correlations by the use of super-normal, unscreened, and family-history screened controls in genome wide case–control studies. Genetic Epidemiology, 44(3), 283289.CrossRefGoogle ScholarPubMed
Kendler, K. S., & Engstrom, E. J. (2018). Criticisms of Kraepelin's psychiatric nosology: 1896–1927. American Journal of Psychiatry, 175(4), 316326.CrossRefGoogle ScholarPubMed
Kessler, R. C., Chiu, W. T., Demler, O., & Walters, E. E. (2005). Prevalence, severity, and comorbidity of 12-month DSM-IV disorders in the National Comorbidity Survey Replication. Archives of General Psychiatry, 62(6), 617627.CrossRefGoogle ScholarPubMed
King, E. A., Davis, J. W., & Degner, J. F. (2019). Are drug targets with genetic support twice as likely to be approved? Revised estimates of the impact of genetic support for drug mechanisms on the probability of drug approval. PLoS Genetics, 15(12), e1008489.CrossRefGoogle ScholarPubMed
Kotov, R., Krueger, R. F., Watson, D., Achenbach, T. M., Althoff, R. R., Bagby, R. M., … Zimmerman, M. (2017). The hierarchical taxonomy of psychopathology (HiTOP): A dimensional alternative to traditional nosologies. Journal of Abnormal Psychology, 126(4), 454477.CrossRefGoogle ScholarPubMed
Krokstad, S., Langhammer, A., Hveem, K., Holmen, T. L., Midthjell, K., Stene, T. R., … Holmen, J. (2013). Cohort profile: The HUNT study, Norway. International journal of epidemiology, 42(4), 968977.CrossRefGoogle Scholar
Lee, P. H., Anttila, V., Won, H., Feng, Y.-C. A., Rosenthal, J., Zhu, Z., … Smoller, J. W. (2019). Genomic relationships, novel loci, and pleiotropic mechanisms across eight psychiatric disorders. Cell, 179(7), 14691482.CrossRefGoogle Scholar
Lichtenstein, P., Yip, B. H., Björk, C., Pawitan, Y., Cannon, T. D., Sullivan, P. F., & Hultman, C. M. (2009). Common genetic determinants of schizophrenia and bipolar disorder in Swedish families: A population-based study. The Lancet, 373(9659), 234239.CrossRefGoogle ScholarPubMed
Malhotra, D., & Sebat, J. (2012). CNVs: Harbingers of a rare variant revolution in psychiatric genetics. Cell, 148(6), 12231241.CrossRefGoogle ScholarPubMed
Manolio, T. A., Collins, F. S., Cox, N. J., Goldstein, D. B., Hindorff, L. A., Hunter, D. J., … Visscher, P. M. (2009). Finding the missing heritability of complex diseases. Nature, 461(7265), 747753.CrossRefGoogle ScholarPubMed
Martin, J., Khramtsova, E. A., Goleva, S. B., Blokland, G. A., Traglia, M., Walters, R. K., … Psychiatric Genomics Consortium (2021). Examining sex-differentiated genetic effects across neuropsychiatric and behavioral traits. Biological Psychiatry.CrossRefGoogle ScholarPubMed
McLaughlin, K. A., Gadermann, A. M., Hwang, I., Sampson, N. A., Al-Hamzawi, A., Andrade, L. H., & Kessler, R. C. (2012). Parent psychopathology and offspring mental disorders: Results from the WHO World Mental Health Surveys. The British Journal of Psychiatry, 200(4), 290299.CrossRefGoogle ScholarPubMed
Mojtabai, R., & Olfson, M. (2010). National trends in psychotropic medication polypharmacy in office-based psychiatry. Archives of General Psychiatry, 67(1), 2636.CrossRefGoogle ScholarPubMed
Network and Pathway Analysis Subgroup of the Psychiatric Genomics Consortium (2015). Psychiatric genome-wide association study analyses implicate neuronal, immune and histone pathways. Nature Neuroscience, 18(2), 199209.CrossRefGoogle Scholar
Paaby, A. B., & Rockman, M. V. (2013). The many faces of pleiotropy. Trends in Genetics, 29(2), 6673.CrossRefGoogle ScholarPubMed
Polderman, T. J., Benyamin, B., De Leeuw, C. A., Sullivan, P. F., Van Bochoven, A., Visscher, P. M., & Posthuma, D. (2015). Meta-analysis of the heritability of human traits based on fifty years of twin studies. Nature Genetics, 47(7), 702709.CrossRefGoogle ScholarPubMed
Purcell, S. (2002). Variance components models for gene–environment interaction in twin analysis. Twin Research and Human Genetics, 5(6), 554571.CrossRefGoogle ScholarPubMed
Ruderfer, D. M., Ripke, S., McQuillin, A., Boocock, J., Stahl, E. A., Pavlides, J. M. W., … Freedman, R. (2018). Genomic dissection of bipolar disorder and schizophrenia, including 28 subphenotypes. Cell, 173(7), 17051715. e16.CrossRefGoogle Scholar
Schaid, D. J., Chen, W., & Larson, N. B. (2018). From genome-wide associations to candidate causal variants by statistical fine-mapping. Nature Reviews Genetics, 19(8), 491504.CrossRefGoogle ScholarPubMed
Schijven, D., Veldink, J. H., & Luykx, J. J. (2020). Genetic cross-disorder analysis in psychiatry: From methodology to clinical utility. The British Journal of Psychiatry, 216(5), 246249.CrossRefGoogle ScholarPubMed
Schizophrenia Working Group of the Psychiatric Genomics Consortium (2020). Mapping genomic loci prioritises genes and implicates synaptic biology in schizophrenia. medRxiv.Google Scholar
Slatkin, M. (2008). Linkage disequilibrium – understanding the evolutionary past and mapping the medical future. Nature Reviews Genetics, 9(6), 477485.CrossRefGoogle ScholarPubMed
Smoller, J. W. (2018). The use of electronic health records for psychiatric phenotyping and genomics. American Journal of Medical Genetics, Part B: Neuropsychiatric Genetics, 177(7), 601612.CrossRefGoogle ScholarPubMed
Smoller, J W, Andreassen, O A, Edenberg, H J, Faraone, S V, Glatt, S J, & Kendler, K S. (2019). Psychiatric genetics and the structure of psychopathology. Molecular psychiatry, 24(3), 409420CrossRefGoogle ScholarPubMed
Smoller, J. W., & Finn, C. T. (2003). Family, twin, and adoption studies of bipolar disorder. American Journal of Medical Genetics, Part C, 123(1), 4858.CrossRefGoogle Scholar
Smoller, J. W., Gardner Schuster, E., & Covino, J.. (2008). The genetic basis of panic and phobic anxiety disorders. American Journal of Medical Genetics Part C: Seminars in Medical Genetics, 148(2), 118126.CrossRefGoogle Scholar
Sullivan, P. F., Agrawal, A., Bulik, C. M., Andreassen, O. A., Børglum, A. D., Breen, G., … O'Donovan, M. C. (2018). Psychiatric genomics: An update and an agenda. American Journal of Psychiatry, 175(1), 1527.CrossRefGoogle Scholar
Sullivan, P. F., Magnusson, C., Reichenberg, A., Boman, M., Dalman, C., Davidson, M., … Lichtenstein, P. (2012). Family history of schizophrenia and bipolar disorder as risk factors for autism. Archives of General Psychiatry, 69(11), 10991103.CrossRefGoogle ScholarPubMed
Van Rheenen, W., Peyrot, W. J., Schork, A. J., Lee, S. H., & Wray, N. R. (2019). Genetic correlations of polygenic disease traits: From theory to practice. Nature Reviews Genetics, 20(10), 567581.CrossRefGoogle ScholarPubMed
Vaswani, M., Linda, F. K., & Ramesh, S. (2003). Role of selective serotonin reuptake inhibitors in psychiatric disorders: A comprehensive review. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 27(1), 85102.CrossRefGoogle ScholarPubMed
Verbanck, M., Chen, C.-Y., Neale, B., & Do, R. (2018). Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nature Genetics, 50(5), 693698.CrossRefGoogle ScholarPubMed
Visscher, P. M., Wray, N. R., Zhang, Q., Sklar, P., McCarthy, M. I., Brown, M. A., & Yang, J. (2017). 10 Years of GWAS discovery: Biology, function, and translation. The American Journal of Human Genetics, 101(1), 522.CrossRefGoogle Scholar
Watanabe, K., Stringer, S., Frei, O., Mirkov, M. U., de Leeuw, C., Polderman, T. J., … Posthuma, D. (2019). A global overview of pleiotropy and genetic architecture in complex traits. Nature Genetics, 51(9), 13391348.CrossRefGoogle ScholarPubMed
Wray, N. R., Lee, S. H., & Kendler, K. S. (2012). Impact of diagnostic misclassification on estimation of genetic correlations using genome-wide genotypes. European Journal of Human Genetics, 20(6), 668674.CrossRefGoogle ScholarPubMed
Wray, N. R., Lee, S. H., Mehta, D., Vinkhuyzen, A. A., Dudbridge, F., & Middeldorp, C. M. (2014). Research review: Polygenic methods and their application to psychiatric traits. Journal of Child Psychology and Psychiatry, 55(10), 10681087.CrossRefGoogle ScholarPubMed
Zheutlin, A. B., Dennis, J., Karlsson Linnér, R., Moscati, A., Restrepo, N., Straub, P., … Huckins, L. M. (2019). Penetrance and pleiotropy of polygenic risk scores for schizophrenia in 106160 patients across four health care systems. American Journal of Psychiatry, 176(10), 846855.CrossRefGoogle ScholarPubMed
Zhu, Z., Zheng, Z., Zhang, F., Wu, Y., Trzaskowski, M., Maier, R. (2018). Causal associations between risk factors and common diseases inferred from GWAS summary data. Nature Communications, 9(1), 112.Google ScholarPubMed