Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-08T18:30:36.591Z Has data issue: false hasContentIssue false

Thalamocortical connectivity and its relationship with symptoms and cognition across the psychosis continuum

Published online by Cambridge University Press:  01 September 2022

Ian S. Ramsay*
Affiliation:
Department of Psychiatry and Behavioral Sciences, University of Minnesota School of Medicine, Minneapolis, MN, USA
Bryon Mueller
Affiliation:
Department of Psychiatry and Behavioral Sciences, University of Minnesota School of Medicine, Minneapolis, MN, USA
Yizhou Ma
Affiliation:
Department of Psychology, University of Minnesota, Minneapolis, MN, USA Maryland Psychiatric Research Center, University of Maryland School of Medicine, Catonsville, MD, USA
Chen Shen
Affiliation:
Department of Psychology, University of Minnesota, Minneapolis, MN, USA
Scott R. Sponheim
Affiliation:
Department of Psychiatry and Behavioral Sciences, University of Minnesota School of Medicine, Minneapolis, MN, USA Minneapolis Veterans Affairs Healthcare System, Minneapolis, MN, USA
*
Author for correspondence: Ian S. Ramsay, E-mail: ramsa045@umn.edu

Abstract

Background

Coordination between the thalamus and cortex is necessary for efficient processing of sensory information and appears disrupted in schizophrenia. The significance of this disrupted coordination (i.e. thalamocortical dysconnectivity) to the symptoms and cognitive deficits of schizophrenia is unclear. It is also unknown whether similar dysconnectivity is observed in other forms of psychotic psychopathology and associated with familial risk for psychosis. Here we examine the relevance of thalamocortical connectivity to the clinical symptoms and cognition of patients with psychotic psychopathology, their first-degree biological relatives, and a group of healthy controls.

Method

Patients with a schizophrenia-spectrum diagnosis (N = 100) or bipolar disorder with a history of psychosis (N = 33), their first-degree relatives (N = 73), and a group of healthy controls (N = 43) underwent resting functional MRI in addition to clinical and cognitive assessments as part of the Psychosis Human Connectome Project. A bilateral mediodorsal thalamus seed-based analysis was used to measure thalamocortical connectivity and test for group differences, as well as associations with symptomatology and cognition.

Results

Reduced connectivity from mediodorsal thalamus to insular, orbitofrontal, and cerebellar regions was seen in schizophrenia. Across groups, greater symptomatology was related to less thalamocortical connectivity to the left middle frontal gyrus, anterior cingulate, right insula, and cerebellum. Poorer cognition was related to less thalamocortical connectivity to bilateral insula. Analyses revealed similar patterns of dysconnectivity across patient groups and their relatives.

Conclusions

Reduced thalamo-prefrontal-cerebellar and thalamo-insular connectivity may contribute to clinical symptomatology and cognitive deficits in patients with psychosis as well as individuals with familial risk for psychotic psychopathology.

Type
Original Article
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abram, S. V., Roach, B. J., Fryer, S. L., Calhoun, V. D., Preda, A., van Erp, T. G. M., … Mathalon, D. H. (2022). Validation of ketamine as a pharmacological model of thalamic dysconnectivity across the illness course of schizophrenia. Molecular Psychiatry, 27(5), 24482456.CrossRefGoogle ScholarPubMed
Andrews, J., Wang, L., Csernansky, J. G., Gado, M. H., & Barch, D. M. (2006). Abnormalities of thalamic activation and cognition in schizophrenia. The American Journal of Psychiatry, 163(3), 463469.CrossRefGoogle ScholarPubMed
Anticevic, A., Cole, M. W., Repovs, G., Murray, J. D., Brumbaugh, M. S., Winkler, A. M., … Glahn, D. C. (2014a). Characterizing thalamo-cortical disturbances in schizophrenia and bipolar illness. Cerebral Cortex, 24(12), 31163130.CrossRefGoogle ScholarPubMed
Anticevic, A., Haut, K., Murray, J. D., Repovs, G., Yang, G. J., Diehl, C., … Cannon, T. D. (2015). Association of thalamic dysconnectivity and conversion to psychosis in youth and young adults at elevated clinical risk. JAMA Psychiatry, 72(9), 882891.CrossRefGoogle Scholar
Anticevic, A., Yang, G., Savic, A., Murray, J. D., Cole, M. W., Repovs, G., … Glahn, D. C. (2014b). Mediodorsal and visual thalamic connectivity differ in schizophrenia and bipolar disorder with and without psychosis history. Schizophrenia Bulletin, 40(6), 12271243.CrossRefGoogle ScholarPubMed
Antonucci, L. A., Di Carlo, P., Passiatore, R., Papalino, M., Monda, A., Amoroso, N., … Blasi, G. (2019). Thalamic connectivity measured with fMRI is associated with a polygenic index predicting thalamo-prefrontal gene co-expression. Brain Structure & Function, 224(3), 13311344.CrossRefGoogle ScholarPubMed
Antonucci, L. A., Penzel, N., Pigoni, A., Dominke, C., Kambeitz, J., & Pergola, G. (2021). Flexible and specific contributions of thalamic subdivisions to human cognition. Neuroscience and Biobehavioral Reviews, 124, 3553.CrossRefGoogle ScholarPubMed
Antonucci, L. A., Taurisano, P., Fazio, L., Gelao, B., Romano, R., Quarto, T., … Blasi, G. (2016). Association of familial risk for schizophrenia with thalamic and medial prefrontal functional connectivity during attentional control. Schizophrenia Research, 173(1-2), 2329.CrossRefGoogle ScholarPubMed
Ashburner, J., & Friston, K. J. (2005). Unified segmentation. NeuroImage, 26(3), 839851.CrossRefGoogle ScholarPubMed
Baker, J. T., Dillon, D. G., Patrick, L. M., Roffman, J. L., Brady, R. O. Jr., Pizzagalli, D. A., … Holmes, A. J. (2019). Functional connectomics of affective and psychotic pathology. Proceedings of the National Academy of Sciences of the USA, 116(18), 90509059.CrossRefGoogle ScholarPubMed
Barch, D. M. (2017). The neural correlates of transdiagnostic dimensions of psychopathology. The American Journal of Psychiatry, 174(7), 613615.CrossRefGoogle ScholarPubMed
Behrens, T. E. J., Johansen-Berg, H., Woolrich, M. W., Smith, S. M., Wheeler-Kingshott, C. A. M., Boulby, P. A., … Matthews, P. M. (2003). Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging. Nature Neuroscience, 6(7), 750757.CrossRefGoogle ScholarPubMed
Behzadi, Y., Restom, K., Liau, J., & Liu, T. T. (2007). A component based noise correction method (CompCor) for BOLD and perfusion based fMRI. NeuroImage, 37(1), 90101.CrossRefGoogle ScholarPubMed
Bergé, D., Lesh, T. A., Smucny, J., & Carter, C. S. (2020). Improvement in prefrontal thalamic connectivity during the early course of the illness in recent-onset psychosis: A 12-month longitudinal follow-up resting-state fMRI study. Psychological Medicine, 19.Google ScholarPubMed
Brunelin, J., Mondino, M., Gassab, L., Haesebaert, F., Gaha, L., Suaud-Chagny, M.-F., … Poulet, E. (2012). Examining transcranial direct-current stimulation (tDCS) as a treatment for hallucinations in schizophrenia. The American Journal of Psychiatry, 169(7), 719724.CrossRefGoogle ScholarPubMed
Buckholtz, J. W., & Meyer-Lindenberg, A. (2012). Psychopathology and the human connectome: Toward a transdiagnostic model of risk for mental illness. Neuron, 74(6), 9901004.CrossRefGoogle Scholar
Çetin, M. S., Christensen, F., Abbott, C. C., Stephen, J. M., Mayer, A. R., Cañive, J. M., … Calhoun, V. D. (2014). Thalamus and posterior temporal lobe show greater inter-network connectivity at rest and across sensory paradigms in schizophrenia. NeuroImage, 97, 117126.CrossRefGoogle ScholarPubMed
Chai, X. J., Castañón, A. N., Ongür, D., & Whitfield-Gabrieli, S. (2012). Anticorrelations in resting state networks without global signal regression. NeuroImage, 59(2), 14201428.CrossRefGoogle ScholarPubMed
Chen, P., Ye, E., Jin, X., Zhu, Y., & Wang, L. (2019). Association between thalamocortical functional connectivity abnormalities and cognitive deficits in schizophrenia. Scientific Reports, 9(1), 2952.CrossRefGoogle ScholarPubMed
Cheng, W., Palaniyappan, L., Li, M., Kendrick, K. M., Zhang, J., Luo, Q., … Feng, J. (2015). Voxel-based, brain-wide association study of aberrant functional connectivity in schizophrenia implicates thalamocortical circuitry. NPJ Schizophrenia, 1, 15016.CrossRefGoogle ScholarPubMed
Cho, K. I. K., Kim, M., Yoon, Y. B., Lee, J., Lee, T. Y., & Kwon, J. S. (2019). Disturbed thalamocortical connectivity in unaffected relatives of schizophrenia patients with a high genetic loading. The Australian and New Zealand Journal of Psychiatry, 53(9), 889895.CrossRefGoogle ScholarPubMed
Cole, J. C., Green Bernacki, C., Helmer, A., Pinninti, N., & O'reardon, J. P. (2015). Efficacy of transcranial magnetic stimulation (TMS) in the treatment of schizophrenia: A review of the literature to date. Innovations in Clinical Neuroscience, 12(7-8), 1219.Google ScholarPubMed
Demro, C., Mueller, B. A., Kent, J. S., Burton, P. C., Olman, C. A., Schallmo, M.-P., … Sponheim, S. R. (2021). The psychosis human connectome project: An overview. NeuroImage, 241, 118439.CrossRefGoogle ScholarPubMed
Esmaeeli, S., Murphy, K., Swords, G. M., Ibrahim, B. A., Brown, J. W., & Llano, D. A. (2019). Visual hallucinations, thalamocortical physiology and Lewy body disease: A review. Neuroscience and Biobehavioral Reviews, 103, 337351.CrossRefGoogle ScholarPubMed
Ferri, J., Ford, J. M., Roach, B. J., Turner, J. A., van Erp, T. G., Voyvodic, J., … Mathalon, D. H. (2018). Resting-state thalamic dysconnectivity in schizophrenia and relationships with symptoms. Psychological Medicine, 48(15), 24922499.CrossRefGoogle ScholarPubMed
First, M. B., Spitzer, R. L., Gibbon, M., & Williams, J. B. W. (2002). Structured clinical interview for DSM-IV-TR axis I disorders, research version, patient edition. Retrieved from SCID-I/P New York, NY, USA.Google Scholar
Forstner, A. J., Hecker, J., Hofmann, A., Maaser, A., Reinbold, C. S., Mühleisen, T. W., … Nöthen, M. M. (2017). Identification of shared risk loci and pathways for bipolar disorder and schizophrenia. PLoS ONE, 12(2), e0171595.CrossRefGoogle ScholarPubMed
Fryer, S. L., Ferri, J. M., Roach, B. J., Loewy, R. L., Stuart, B. K., Anticevic, A., … Mathalon, D. H. (2021). Thalamic dysconnectivity in the psychosis risk syndrome and early illness schizophrenia. Psychological Medicine, 19.Google ScholarPubMed
Gasquoine, P. G. (2014). Contributions of the insula to cognition and emotion. Neuropsychology Review, 24(2), 7787.CrossRefGoogle ScholarPubMed
Giraldo-Chica, M., & Woodward, N. D. (2017). Review of thalamocortical resting-state fMRI studies in schizophrenia. Schizophrenia Research, 180, 5863.CrossRefGoogle ScholarPubMed
Gong, Q., Puthusseryppady, V., Dai, J., He, M., Xu, X., Shi, Y., … Mechelli, A. (2019). Dysconnectivity of the medio-dorsal thalamic nucleus in drug-naïve first episode schizophrenia: Diagnosis-specific or trans-diagnostic effect? Translational Psychiatry, 9(1), 9.CrossRefGoogle ScholarPubMed
Gupta, T., Kelley, N. J., Pelletier-Baldelli, A., & Mittal, V. A. (2018). Transcranial direct current stimulation, symptomatology, and cognition in psychosis: A qualitative review. Frontiers in Behavioral Neuroscience, 12, 94.CrossRefGoogle ScholarPubMed
Harms, M. P., Somerville, L. H., Ances, B. M., Andersson, J., Barch, D. M., Bastiani, M., … Yacoub, E. (2018). Extending the human connectome project across ages: Imaging protocols for the lifespan development and aging projects. NeuroImage, 183, 972984.CrossRefGoogle ScholarPubMed
Huang, A. S., Rogers, B. P., Sheffield, J. M., Vandekar, S., Anticevic, A., & Woodward, N. D. (2021). Characterizing effects of age, sex and psychosis symptoms on thalamocortical functional connectivity in youth. NeuroImage, 243, 118562.CrossRefGoogle ScholarPubMed
Huang, A. S., Rogers, B. P., & Woodward, N. D. (2019). Disrupted modulation of thalamus activation and thalamocortical connectivity during dual task performance in schizophrenia. Schizophrenia Research, 210, 270277.CrossRefGoogle ScholarPubMed
Keefe, R. S. E., Goldberg, T. E., Harvey, P. D., Gold, J. M., Poe, M. P., & Coughenour, L. (2004). The brief assessment of cognition in schizophrenia: Reliability, sensitivity, and comparison with a standard neurocognitive battery. Schizophrenia Research, 68(2–3), 283297.CrossRefGoogle ScholarPubMed
Keefe, R. S. E., Harvey, P. D., Goldberg, T. E., Gold, J. M., Walker, T. M., Kennel, C., & Hawkins, K. (2008). Norms and standardization of the Brief Assessment of Cognition in Schizophrenia (BACS). Schizophrenia Research, 102(1–3), 108115.CrossRefGoogle ScholarPubMed
Kwak, Y. B., Cho, K. I. K., Hwang, W. J., Kim, A., Park, H., Lee, J. (2021). Mapping thalamocortical functional connectivity with large-scale brain networks in patients with first-episode psychosis. Scientific reports, 11(1), 111.CrossRefGoogle ScholarPubMed
Leucht, S., Samara, M., Heres, S., & Davis, J. M. (2016). Dose equivalents for antipsychotic drugs: The DDD method. Schizophrenia Bulletin, 42(Suppl 1), S90S94.CrossRefGoogle ScholarPubMed
Mallikarjun, P. K., Lalousis, P. A., Dunne, T. F., Heinze, K., Reniers, R. L., Broome, M. R., … Upthegrove, R. (2018). Aberrant salience network functional connectivity in auditory verbal hallucinations: A first episode psychosis sample. Translational Psychiatry, 8(1), 69.CrossRefGoogle ScholarPubMed
Marek, S., Tervo-Clemmens, B., Calabro, F. J., & Montez, D. F. (2020). Towards reproducible brain-wide association studies. BioRxiv. Retrieved from https://www.biorxiv.org/content/10.1101/2020.08.21.257758v1.abstract.Google Scholar
Miyata, J. (2019). Toward integrated understanding of salience in psychosis. Neurobiology of Disease, 131, 104414.CrossRefGoogle ScholarPubMed
Modell, J. G., Mountz, J. M., Curtis, G. C., & Greden, J. F. (1989). Neurophysiologic dysfunction in basal ganglia/limbic striatal and thalamocortical circuits as a pathogenetic mechanism of obsessive-compulsive disorder. The Journal of Neuropsychiatry and Clinical Neurosciences, 1(1), 2736.Google ScholarPubMed
Ng, W. X. D., Lau, I. Y., Graham, S., & Sim, K. (2009). Neurobiological evidence for thalamic, hippocampal and related glutamatergic abnormalities in bipolar disorder: A review and synthesis. Neuroscience and Biobehavioral Reviews, 33(3), 336354.CrossRefGoogle ScholarPubMed
Nurnberger, J. I., Blehar, M. C., Kaufmann, C. A., York-Cooler, C., Simpson, S. G., Harkavy-Friedman, J., … Reich, T. (1994). Diagnostic interview for genetic studies: Rationale, unique features, and training. Archives of General Psychiatry, 51(11), 849859, Retrieved 11 June 2021 from.CrossRefGoogle ScholarPubMed
Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9(1), 97113.CrossRefGoogle ScholarPubMed
Palaniyappan, L., & Liddle, P. F. (2012). Does the salience network play a cardinal role in psychosis? An emerging hypothesis of insular dysfunction. Journal of Psychiatry & Neuroscience: JPN, 37(1), 1727.CrossRefGoogle ScholarPubMed
Parnaudeau, S., Bolkan, S. S., & Kellendonk, C. (2018). The mediodorsal thalamus: An essential partner of the prefrontal cortex for cognition. Biological Psychiatry, 83(8), 648656.CrossRefGoogle ScholarPubMed
Parnaudeau, S., O'Neill, P.-K., Bolkan, S. S., Ward, R. D., Abbas, A. I., Roth, B. L., … Kellendonk, C. (2013). Inhibition of mediodorsal thalamus disrupts thalamofrontal connectivity and cognition. Neuron, 77(6), 11511162.CrossRefGoogle ScholarPubMed
Penner, J., Ford, K. A., Taylor, R., Schaefer, B., Théberge, J., Neufeld, R. W. J., … Williamson, P. C. (2016). Medial prefrontal and anterior insular connectivity in early schizophrenia and major depressive disorder: A resting functional MRI evaluation of large-scale brain network models. Frontiers in Human Neuroscience, 10, 132.CrossRefGoogle ScholarPubMed
Pergola, G., Danet, L., Pitel, A.-L., Carlesimo, G. A., Segobin, S., Pariente, J., … Barbeau, E. J. (2018). The regulatory role of the human mediodorsal thalamus. Trends in Cognitive Sciences, 22(11), 10111025.CrossRefGoogle ScholarPubMed
Pergola, G., Selvaggi, P., Trizio, S., Bertolino, A., & Blasi, G. (2015). The role of the thalamus in schizophrenia from a neuroimaging perspective. Neuroscience and Biobehavioral Reviews, 54, 5775.CrossRefGoogle ScholarPubMed
Ramsay, I. S. (2019). An activation likelihood estimate meta-analysis of thalamocortical dysconnectivity in psychosis. Biological Psychiatry Cognitive Neuroscience and Neuroimaging, 4(10), 859869.CrossRefGoogle ScholarPubMed
Ramsay, I. S., Nienow, T. M., & MacDonald, A. W. III. (2017). Increases in intrinsic thalamocortical connectivity and overall cognition following cognitive remediation in chronic schizophrenia. Biological Psychiatry. Cognitive Neuroscience and Neuroimaging, 2(4), 355362.CrossRefGoogle ScholarPubMed
Ramsay, I. S., Roach, B. J., Fryer, S., Fisher, M., Loewy, R., Ford, J. M., … Mathalon, D. H. (2020). Increased global cognition correlates with increased thalamo-temporal connectivity in response to targeted cognitive training for recent onset schizophrenia. Schizophrenia Research, 218, 131–137.CrossRefGoogle ScholarPubMed
Ross, R. G., & Freedman, R. (2015). Endophenotypes in schizophrenia for the perinatal period: Criteria for validation. Schizophrenia Bulletin, 41(4), 824834.CrossRefGoogle ScholarPubMed
Seeley, W. W., Menon, V., Schatzberg, A. F., Keller, J., Glover, G. H., Kenna, H., … Greicius, M. D. (2007). Dissociable intrinsic connectivity networks for salience processing and executive control. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 27(9), 23492356.CrossRefGoogle ScholarPubMed
Sheffield, J. M., Kandala, S., Tamminga, C. A., Pearlson, G. D., Keshavan, M. S., Sweeney, J. A., … Barch, D. M. (2017). Transdiagnostic associations between functional brain network integrity and cognition. JAMA Psychiatry, 74(6), 605613.CrossRefGoogle ScholarPubMed
Sheffield, J. M., Repovs, G., Harms, M. P., Carter, C. S., Gold, J. M., MacDonald, A. W. III., … Barch, D. M. (2015). Fronto-parietal and cingulo-opercular network integrity and cognition in health and schizophrenia. Neuropsychologia, 73, 8293.CrossRefGoogle ScholarPubMed
Sherman, S. M. (2016). Thalamus plays a central role in ongoing cortical functioning. Nature Neuroscience, 19(4), 533541.CrossRefGoogle Scholar
Sherman, S. M., & Guillery, R. W. (2002). The role of the thalamus in the flow of information to the cortex. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 357(1428), 16951708.CrossRefGoogle ScholarPubMed
Steullet, P. (2020). Thalamus-related anomalies as candidate mechanism-based biomarkers for psychosis. Schizophrenia Research, 226, 147157.CrossRefGoogle ScholarPubMed
Szeszko, P. R., Gohel, S., Vaccaro, D. H., Chu, K.-W., Tang, C. Y., Goldstein, K. E., … Hazlett, E. A. (2022). Frontotemporal thalamic connectivity in schizophrenia and schizotypal personality disorder. Psychiatry Research. Neuroimaging, 322, 111463.CrossRefGoogle ScholarPubMed
Tu, P.-C., Bai, Y. M., Li, C.-T., Chen, M.-H., Lin, W.-C., Chang, W.-C., & Su, T.-P. (2019). Identification of common thalamocortical dysconnectivity in four major psychiatric disorders. Schizophrenia Bulletin, 45(5), 11431151.CrossRefGoogle ScholarPubMed
Van Dijk, K. R. A., Sabuncu, M. R., & Buckner, R. L. (2012). The influence of head motion on intrinsic functional connectivity MRI. NeuroImage, 59(1), 431438.CrossRefGoogle ScholarPubMed
Ventura, J., Nuechterlein, K. H., Subotnik, K. L., Gutkind, D., & Gilbert, E. A. (2000). Symptom dimensions in recent-onset schizophrenia and mania: A principal components analysis of the 24-item Brief Psychiatric Rating Scale. Psychiatry Research, 97(2–3), 129135.CrossRefGoogle Scholar
Whitwell, J. L., Avula, R., Master, A., Vemuri, P., Senjem, M. L., Jones, D. T., … Josephs, K. A. (2011). Disrupted thalamocortical connectivity in PSP: A resting-state fMRI, DTI, and VBM study. Parkinsonism & Related Disorders, 17(8), 599605.CrossRefGoogle ScholarPubMed
Wilson, S., & Sponheim, S. R. (2014). Dimensions underlying psychotic and manic symptomatology: Extending normal-range personality traits to schizophrenia and bipolar spectra. Comprehensive Psychiatry, 55(8), 18091819.CrossRefGoogle ScholarPubMed
Woodward, N. D., Giraldo-Chica, M., Rogers, B., & Cascio, C. J. (2017). Thalamocortical dysconnectivity in autism spectrum disorder: An analysis of the Autism Brain Imaging Data Exchange. Biological Psychiatry. Cognitive Neuroscience and Neuroimaging, 2(1), 7684.CrossRefGoogle ScholarPubMed
Woodward, N. D., & Heckers, S. (2016). Mapping thalamocortical functional connectivity in chronic and early stages of psychotic disorders. Biological Psychiatry, 79(12), 10161025.CrossRefGoogle ScholarPubMed
Woodward, N. D., Karbasforoushan, H., & Heckers, S. (2012). Thalamocortical dysconnectivity in schizophrenia. The American Journal of Psychiatry, 169(10), 10921099.CrossRefGoogle ScholarPubMed
Wotruba, D., Michels, L., Buechler, R., Metzler, S., Theodoridou, A., Gerstenberg, M., … Heekeren, K. (2014). Aberrant coupling within and across the default mode, task-positive, and salience network in subjects at risk for psychosis. Schizophrenia Bulletin, 40(5), 10951104.CrossRefGoogle ScholarPubMed
Xi, C., Liu, Z.-N., Yang, J., Zhang, W., Deng, M.-J., Pan, Y.-Z., … Pu, W.-D. (2020). Schizophrenia patients and their healthy siblings share decreased prefronto-thalamic connectivity but not increased sensorimotor-thalamic connectivity. Schizophrenia Research, 222, 354361.CrossRefGoogle Scholar
Yao, B., Neggers, S. F. W., Kahn, R. S., & Thakkar, K. N. (2020). Altered thalamocortical structural connectivity in persons with schizophrenia and healthy siblings. NeuroImage. Clinical, 28, 102370.CrossRefGoogle ScholarPubMed
Yao, S., Song, J., Gao, L., Yan, Y., Huang, C., Ding, H., … Xu, G. (2015). Thalamocortical sensorimotor circuit damage associated with disorders of consciousness for diffuse axonal injury patients. Journal of the Neurological Sciences, 356(1–2), 168174.CrossRefGoogle ScholarPubMed
Zhang, M., Palaniyappan, L., Deng, M., Zhang, W., Pan, Y., Fan, Z., … Pu, W. (2021). Abnormal thalamocortical circuit in adolescents with early-onset schizophrenia. Journal of the American Academy of Child and Adolescent Psychiatry, 60(4), 479489.CrossRefGoogle ScholarPubMed
Supplementary material: File

Ramsay et al. supplementary material

Tables S1-S5 and Figures S1-S2

Download Ramsay et al. supplementary material(File)
File 788.8 KB