Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T19:39:52.651Z Has data issue: false hasContentIssue false

A topography of 21 phobic fears: network analysis in an epidemiological sample of adult twins

Published online by Cambridge University Press:  10 December 2020

Kenneth S. Kendler*
Affiliation:
Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, USA Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, USA
Steven H. Aggen
Affiliation:
Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, USA Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, USA
Marlene Werner
Affiliation:
Department of Sexology and Psychosomatic Gynaecology, Amsterdam University Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
Eiko I. Fried
Affiliation:
Department of Psychology, Unit Clinical Psychology, Leiden University, Leiden, The Netherlands
*
Author for correspondence: Kenneth S. Kendler, E-mail: Kenneth.Kendler@vcuhealth.org

Abstract

Background

Few factor analyses and no network analyses have examined the structure of DSM phobic fears or tested the specificity of the relationship between panic disorder and agoraphobic fears.

Methods

Histories of 21 lifetime phobic fears, coded as four-level ordinal variables (no fear to fear with major interference) were assessed at personal interview in 7514 adults from the Virginia Twin Registry. We estimated Gaussian Graphical Models on individual phobic fears; compared network structures of women and men using the Network Comparison Test; used community detection to determine the number and nature of groups in which phobic fears hang together; and validated the anticipated specific relationship between panic disorder and agoraphobia.

Results

All networks were densely and positively inter-connected; networks of women and men were structurally similar. Our most frequent and stable solution identified four phobic clusters: (i) blood-injection, (ii) social-agoraphobia, (iii) situational, and (iv) animal-disease. Fear of public restrooms and of diseases clustered with animal and not, respectively, social and blood-injury phobias. When added to the network, the three strongest connections with lifetime panic disorder were all agoraphobic fears: being in crowds, going out of the house alone, and being in open spaces

Conclusions

Using network analyses applied to a large epidemiologic twin sample, we broadly validated the DSM-IV typography but did not entirely support the distinction of agoraphobic and social phobic fears or the DSM placements for fears of public restrooms and diseases. We found strong support for the specificity of the relationship between panic disorder and agoraphobic fears.

Type
Original Article
Copyright
Copyright © The Author(s) 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

American Psychiatric Association (1980). Diagnostic and statistical manual of mental disorders (3rd ed.). Washington, DC: American Psychiatric Association.Google Scholar
American Psychiatric Association (1987). Diagnostic and statistical manual of mental disorders (Revised 3rd ed.). Washington, DC: American Psychiatric Association.Google Scholar
American Psychiatric Association (1994). Diagnostic and statistical manual of mental disorders (4th ed.). Washington, DC: American Psychiatric Association.Google Scholar
American Psychiatric Association (2013). Diagnostic and statistical manual of mental disorders: Fifth edition, DSM-5. Washington, DC: American Psychiatric Association.Google Scholar
Berrios, G. E. (1996). The history of mental symptoms: Descriptive psychopathology since the nineteenth century. New York, NY: Cambridge University Press.CrossRefGoogle Scholar
Blanken, T. F., Deserno, M. K., Dalege, J., Borsboom, D., Blanken, P., Kerkhof, G. A., & Cramer, A. O. J. (2018). The role of stabilizing and communicating symptoms given overlapping communities in psychopathology networks. Scientific Reports, 8(1), 5854. doi:10.1038/s41598-018-24224-2.CrossRefGoogle ScholarPubMed
Borsboom, D. (2017). A network theory of mental disorders. World Psychiatry, 16(1), 513.CrossRefGoogle ScholarPubMed
Brently, S. (2012). What is the phobia of public restrooms? Retrieved from http://www.livestrong.com/article/127759-phobia-public-restrooms/.Google Scholar
Cox, B. J., McWilliams, L. A., Clara, I. P., & Stein, M. B. (2003). The structure of feared situations in a nationally representative sample. Anxiety Disorders, 17, 89101.CrossRefGoogle Scholar
Craske, M. G., & Barlow, D. H. (2008). Panic disorder and agoraphobia. Clinical Handbook of Psychological Disorders: A Step-by-step Treatment Manual, 4, 164.Google Scholar
Craske, M. G., & Simos, G. (2013). Panic disorder and agoraphobia. In Simos, G. & Hofmann, S. G. (Eds.), CBT for anxiety disorders: A practitioner book (1st ed., pp. 324). NY: John Wiley & Sons, Ltd. (Reprinted from: Not in File).CrossRefGoogle Scholar
Crome, E., & Baillie, A. (2014). Mild to severe social fears: Ranking types of feared social situations using item response theory. Journal of Anxiety Disorders, 28(5), 471479, doi:S0887-6185(14)00064-4 [pii];10.1016/j.janxdis.2014.05.002 [doi].CrossRefGoogle ScholarPubMed
Culberson, F. (2012). The phobia list. Retrieved from http://www.phobialist.com.Google Scholar
Epskamp, S., Borsboom, D., & Fried, E. I. (2018). Estimating psychological networks and their accuracy: A tutorial paper. Behavior Research Methods, 50(1), 195212.CrossRefGoogle ScholarPubMed
Epskamp, S., & Fried, E. I. (2018). A tutorial on regularized partial correlation networks. Psychological Methods, 23(4), 617.CrossRefGoogle ScholarPubMed
Feighner, J. P., Robins, E., Guze, S. B., Woodruff, R. A. Jr., Winokur, G., & Munoz, R. (1972). Diagnostic criteria for use in psychiatric research. Archives of General Psychiatry, 26(1), 5763. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/5009428.CrossRefGoogle ScholarPubMed
Fisher, A. B., Schaefer, B. A., Watkins, M. W., Worrell, F. C., & Hall, T. E. (2006). The factor structure of the Fear Survey Schedule for Children-II in Trinidadian children and adolescents. Anxiety Disorders, 20, 740759.CrossRefGoogle ScholarPubMed
Fredrikson, M., Annas, P., Fischer, H., & Wik, G. (1996). Gender and age differences in the prevalence of specific fears and phobias. Behavior Research and Therapy, 34(1), 3339. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/8561762.CrossRefGoogle ScholarPubMed
Fried, E. I. (2020). Lack of theory building and testing impedes progress in the factor and network literature. Psychological Inquiry, In Press([epub]). doi:psyarxiv.com/zg84s4s.CrossRefGoogle Scholar
Fried, E. I., & Cramer, A. O. J. (2017). Moving forward: Challenges and directions for psychopathological network theory and methodology. Perspectives on Psychological Science, 12(6), 9991020. doi:10.1177/1745691617705892.CrossRefGoogle ScholarPubMed
Friedman, J., Hastie, T., & Tibshirani, R. (2008). Sparse inverse covariance estimation with the graphical LASSO. Biostatistics (Oxford, England), 9(3), 432441.CrossRefGoogle ScholarPubMed
Fruchterman, T. M., & Reingold, E. M. (1991). Graph drawing by force-directed placement. Software: Practice and Experience, 21(11), 11291164.Google Scholar
Furmark, T., Tillfors, M., Everz, P., Marteinsdottir, I., Gefvert, O., & Fredrikson, M. (1999). Social phobia in the general population: Prevalence and sociodemographic profile. Social Psychiatry and Psychiatric Epidemiology, 34(8), 416424. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/10501711.CrossRefGoogle ScholarPubMed
Gittelman, R., & Klein, D. F. (1984). Relationship between separation anxiety and panic and agoraphobic disorders. Psychopathology, 17(Suppl 1), 5665. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/6369368.CrossRefGoogle ScholarPubMed
Golino, H. F., & Epskamp, S. (2017). Exploratory graph analysis: A new approach for estimating the number of dimensions in psychological research. PLoS ONE, 12(6), e0174035. doi: 10.1371/journal.pone.0174035.CrossRefGoogle ScholarPubMed
Grant, B. F., Hasin, D. S., Stinson, F. S., Dawson, D. A., Goldstein, R. B., Smith, S., … Saha, T. D. (2006). The epidemiology of DSM-IV panic disorder and agoraphobia in the United States: Results from the National Epidemiologic Survey on Alcohol and Related Conditions. Journal of Clinical Psychiatry, 67(3), 363374. doi:10.4088/jcp.v67n0305.CrossRefGoogle ScholarPubMed
Guloksuz, S., Pries, L. K., & van Os, J. (2017). Application of network methods for understanding mental disorders: Pitfalls and promise. Psychological Medicine, 47(16), 27432752. doi:10.1017/s0033291717001350.CrossRefGoogle ScholarPubMed
Hallam, R. S., & Hafner, R. J. (1978). Fears of phobic patients: Factor analyses of self-report data. Behavior Research and Therapy, 16(1), 16. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/666688.CrossRefGoogle ScholarPubMed
Haslbeck, J., & Fried, E. I. (2017). How predictable are symptoms in psychopathological networks? A reanalysis of 18 published datasets. Psychological Medicine, 47(16), 27672776.CrossRefGoogle ScholarPubMed
Joyce, P. R., Bushnell, J. A., Oakley-Browne, M. A., Wells, J. E., & Hornblow, A. R. (1989). The epidemiology of panic symptomatology and agoraphobic avoidance. Comprehensive Psychiatry, 30(4), 303312. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/2788067.CrossRefGoogle ScholarPubMed
Kendler, K. S., Aggen, S. H., Knudsen, G. P., Roysamb, E., Neale, M. C., & Reichborn-Kjennerud, T. (2011). The structure of genetic and environmental risk factors for syndromal and subsyndromal common DSM-IV axis I and all axis II disorders. American Journal of Psychiatry, 168(1), 2939. doi:appi.ajp.2010.10030340 [pii];10.1176/appi.ajp.2010.10030340 [doi].CrossRefGoogle ScholarPubMed
Kendler, K. S., & Prescott, C. A. (2006). Genes, environment, and psychopathology: Understanding the causes of psychiatric and substance use disorders (1st ed.). New York: Guilford Press (July 26, 2006).Google Scholar
Kruis, J., & Maris, G. (2016). Three representations of the Ising model. Scientific Reports, 6, 34175.CrossRefGoogle ScholarPubMed
Loken, E. K., Hettema, J. M., Aggen, S. H., & Kendler, K. S. (2014). The structure of genetic and environmental risk factors for fears and phobias. Psychological Medicine, 44(11), 23752384, doi:S0033291713003012 [pii];10.1017/S0033291713003012 [doi].CrossRefGoogle ScholarPubMed
Marks, I. M. (1987). Fears, phobias, and rituals: Panic, anxiety, and their disorders. New York, NY: Oxford University Press.Google Scholar
McLean, C. P., & Anderson, E. R. (2009). Brave men and timid women? A review of the gender differences in fear and anxiety. Clinical Psychology Review, 29(6), 496505.CrossRefGoogle ScholarPubMed
Meikle, S., & Mitchell, M. C. (1974). Factor analysis of the Fear Survey Schedule with phobics. Journal of Clinical Psychology, 30(1), 4446. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/4811919.3.0.CO;2-6>CrossRefGoogle ScholarPubMed
Mellon, R. (2000). A Greek-language inventory of fears: Psychometric properties and factor structure of self-reports of fears on the Hellenic Fear Survey Schedule. Journal of Psychopathology and Behavioral Assessment, 22(2), 123140, Retrieved from <Go to ISI>://000088049200002.CrossRefGoogle Scholar
Muris, P., & Ollendick, T. H. (2002). The assessment of contemporary fears in adolescents using a modified version of the Fear Survey Schedule for Children-Revised. Journal of Anxiety Disorders, 16(6), 567584. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/12405518.CrossRefGoogle ScholarPubMed
Phillips, K., Fulker, D. W., & Rose, R. J. (1987). Path analysis of seven fear factors in adult twin and sibling pairs and their parents. Genetic Epidemiology, 4(5), 345355. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/3692134.CrossRefGoogle ScholarPubMed
Robinaugh, D. J., Hoekstra, R. H., Toner, E. R., & Borsboom, D. (2020). The network approach to psychopathology: A review of the literature 2008–2018 and an agenda for future research. Psychological Medicine, 50(3), 353366.CrossRefGoogle Scholar
Robins, L. N., & Helzer, J. E. (1985). Diagnostic interview schedule (DIS): Version III-A. St. Louis, MO: Washington University School of Medicine.Google Scholar
Rothstein, W., Boblitt, W. E., & Holmes, G. R. (1972). Factor-analysis of fear survey schedule with a psychiatric population. Journal of Clinical Psychology, 28(1), 78, –&. Retrieved from <Go to ISI>://A1972L529200026.3.0.CO;2-A>CrossRefGoogle ScholarPubMed
Spitzer, R. L., Endicott, J., & Robins, E. (1975). Research diagnostic criteria for a selected group of functional disorders (2nd ed.). New York: New York Psychiatric Institute.Google Scholar
Thyer, B. A., Himle, J., & Curtis, G. C. (1985). Blood-injury-illness phobia: A review. Journal of Clinical Psychology, 41(4), 451459. doi: doi:10.1002/1097-4679(198507)41:4<451::aid-jclp2270410402>3.0.co;2-o [doi]3.0.CO;2-O>CrossRefGoogle ScholarPubMed
Torgersen, S. (1979). The nature and origin of common phobic fears. British Journal of Psychiatry, 134, 343351. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/571742.CrossRefGoogle ScholarPubMed
Turk, C. L., Heimberg, R. G., Orsillo, S. M., Holt, C. S., Gitow, A., Street, L. L., … Liebowitz, M. R. (1998). An investigation of gender differences in social phobia. Journal of Anxiety Disorders, 12(3), 209223. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/9653680.CrossRefGoogle ScholarPubMed
van Bork, R., Rhemtulla, M., Waldorp, L. J., Kruis, J., Rezvanifar, S., & Borsboom, D. (2019). Latent variable models and networks: Statistical equivalence and testability. Multivariate Behavioral Research, 54, 124.Google Scholar
van Borkulo, C., Boschloo, L., Kossakowski, J., Tio, P., Schoevers, R., Borsboom, D., & Boschloo, L. (2017). Comparing network structures on three aspects. In: Working Paper. doi: 10.13140/RG. 2.2. 29455.38569.CrossRefGoogle Scholar
Werner, M. (2018). The ComDet package-iterated community detection for the analysis of community membership, its stability and the detection of fuzzy community boundaries. Open Science Framework Preprints. OSF Preprints. doi:10.31219/osf.io/bwsq7.Google Scholar
Yang, Z., Algesheimer, R., & Tessone, C. J. (2016). A comparative analysis of community detection algorithms on artificial networks. Scientific Reports, 6, 30750.CrossRefGoogle ScholarPubMed
Supplementary material: File

Kendler et al. supplementary material

Kendler et al. supplementary material

Download Kendler et al. supplementary material(File)
File 10.3 MB