Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-07T18:34:33.488Z Has data issue: false hasContentIssue false

A Boundary Mixture Approach to Violations of Conditional Independence

Published online by Cambridge University Press:  01 January 2025

Johan Braeken*
Affiliation:
Tilburg University
*
Requests for reprints should be sent to Johan Braeken, Department of Methodology and Statistics, Tilburg University, Tilburg, The Netherlands. E-mail: j.braeken@uvt.nl

Abstract

Conditional independence is a fundamental principle in latent variable modeling and item response theory. Violations of this principle, commonly known as local item dependencies, are put in a test information perspective, and sharp bounds on these violations are defined. A modeling approach is proposed that makes use of a mixture representation of these boundaries to account for the local dependence problem by finding a balance between independence on the one side and absolute dependence on the other side. In contrast to alternative approaches, the nature of the proposed boundary mixture model does not necessitate a change in formulation of the typical item characteristic curves used in item response theory. This has attractive interpretational advantages and may be useful for general test construction purposes.

Type
Original Paper
Copyright
Copyright © 2010 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ashford, J.R., Sowden, R.R. (1970). Multivariate probit analysis. Biometrics, 26, 535546.CrossRefGoogle Scholar
Birnbaum, A. (1968). Some latent trait models and their use in inferring an examinee’s ability. In Lord, F.M., Novick, M.R. (Eds.), Statistical theories of mental test scores (pp. 397497). Reading: Addison-Wesley.Google Scholar
Braeken, J., Tuerlinckx, F. (2009). A mixed model framework for teratology studies. Biostatistics, 10, 744755.CrossRefGoogle ScholarPubMed
Braeken, J., Tuerlinckx, F., De Boeck, P. (2007). Copulas for residual dependency. Psychometrika, 72, 393411.CrossRefGoogle Scholar
Chen, W., Thissen, D. (1997). Local dependence indexes for item pairs using item response theory. Journal of Educational and Behavioral Statistics, 22, 265289.CrossRefGoogle Scholar
Cureton, E.E. (1959). Note on φ/φ max. Psychometrika, 24, 8991.CrossRefGoogle Scholar
Ferrara, S., Huynh, H., Michaels, H. (1999). Contextual explanations of local dependence in item clusters in a large-scale hands-on science performance assessment. Journal of Educational Measurement, 36, 119140.CrossRefGoogle Scholar
Fréchet, M. (1951). Sur les tableaux de corrélation dont les marges sont données. Annales de l’Université Lyon: Série 3, 14, 5377.Google Scholar
Gibbons, R.D., Hedeker, D.R. (1992). Full-information item bi-factor analysis. Psychometrika, 57, 423436.CrossRefGoogle Scholar
Hoeffding, W. (1940). Masstabinvariante Korrelations Theorie. Schriften des Matematischen Instituts und des Instituts für angewandte Mathematik der Universität Berlin, 5, 179223. [Reprinted as Scale-invariant correlation theory in the Collected Works of Wassily Hoeffding, N.I. Fischer, and P.K. Sen (Eds.), New York: Springer.]Google Scholar
Hoskens, M., De Boeck, P. (1997). A parametric model for local item dependencies among test items. Psychological Methods, 2, 261277.CrossRefGoogle Scholar
Ip, E. (2001). Testing for local dependence in dichotomous and polutomous item response models. Psychometrika, 66, 109132.CrossRefGoogle Scholar
Joe, H. (1997). Multivariate models and dependence concepts, London: Chapman & Hall.Google Scholar
Junker, B.W. (1991). Essential independence and likelihood-based ability estimation for polytomous items. Psychometrika, 56, 255278.CrossRefGoogle Scholar
Lazarsfeld, P.F. (1950). The logical and mathematical foundation of latent structure analysis & the interpretation and mathematical foundation of latent structure analysis. In Stouffer, S.A., Guttman, L., Suchman, E.A., Lazarsfeld, P.F., Star, S.A., Claussen, J.A. (Eds.), Measurement and prediction (pp. 756). Princeton University Press: Thousand Oaks.Google Scholar
Lord, F.M. (1980). Applications of item response theory to practical testing problems, Mahwah: Erlbaum.Google Scholar
MacCallum, R. (1986). Specification searches in covariance structure modeling. Psychological Bulletin, 100, 107120.CrossRefGoogle Scholar
Masters, G.N. (1988). Item discrimination: when more is worse. Journal of Educational Measurement, 25, 1529.CrossRefGoogle Scholar
Mood, A.M., Graybill, F.A., Boes, D.C. (1974). Introduction to the theory of statistics, New York: McGraw-Hill.Google Scholar
Nelsen, R.B. (1998). An introduction to copulas, New York: Springer.Google Scholar
Salhi, S. (1998). Heuristic search methods. In Marcoulides, G.A. (Eds.), Modern methods for business research (pp. 147175). Mahwah: Lawrence Erlbaum.Google Scholar
Samejima, F. (1969). Estimation of latent ability using a response pattern of graded scores. Psychometrika Monograph Supplement, 7.CrossRefGoogle Scholar
Samejima, F. (1972). A general model for free-response data. Psychometrika Monograph Supplement, 18.Google Scholar
Shaffer, J.P. (1995). Multiple hypothesis testing. Annual Review of Psychology, 46, 561584.CrossRefGoogle Scholar
Sireci, S.G., Thissen, D., Wainer, H. (1991). On the reliability of testlet-based tests. Journal of Educational Measurement, 28, 237247.CrossRefGoogle Scholar
Sklar, A. (1959). Fonctions de répartition à n dimension et leurs marges. Publications Statistiques Université de Paris, 8, 229231.Google Scholar
Steiger, J.H. (1990). Structural model evaluation and modification: An interval estimation approach. Multivariate Behavioral Research, 25, 173180.CrossRefGoogle ScholarPubMed
Tate, R. (2003). A comparison of selected empirical methods for assessing the structure of responses to test items. Applied Psychological Measurement, 27, 159203.CrossRefGoogle Scholar
Tuerlinckx, F., & De Boeck, P. (2001). Non-modeled item interactions lead to distorted discrimination parameters: A case study. Methods of Psychological Research, 6. [Retrieved May 20, 2005 from http://www.mpr-online.de/issue14/art3/Tuerlinckx.pdf.Google Scholar
Verhelst, N.D., Glas, C.A.W. (1993). A dynamic generalization of the Rasch model. Psychometrika, 58, 395415.CrossRefGoogle Scholar
Wainer, H., Bradlow, E., Wang, X. (2007). Testlet response theory and its applications, Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Yen, W.M. (1984). Effects of local item dependence on the fit and equating performance of the three-parameter logistic model. Applied Psychological Measurement, 8, 125145.CrossRefGoogle Scholar
Yen, W.M. (1993). Scaling performance assessments: Strategies for managing local item dependence. Journal of Educational Measurement, 30, 187213.CrossRefGoogle Scholar
Zeger, S.L., Liang, K.-Y., Albert, P.S. (1988). Models for longitudinal data: A generalized estimation equation approach. Biometrics, 44, 10491060.CrossRefGoogle Scholar