Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-08T04:30:01.476Z Has data issue: false hasContentIssue false

A Conjunctive Parallelogram Model for Pick any/n Data

Published online by Cambridge University Press:  01 January 2025

Iwin Leenen
Affiliation:
Katholieke Universiteit Leuven
Iven Van Mechelen*
Affiliation:
Katholieke Universiteit Leuven
*
All correspondence concerning this paper is to be addressed to Iven Van Mechelen, Department of Psychology, K.U.Leuven, Tiensestraat 102, B-3000 Leuven, Belgium; email: iven.vanmechelen@psy.kuleuven.ac.be

Abstract

This paper proposes a multidimensional generalization of Coombs' (1964) parallelogram model for “pick any/n” data, which result from each of a number of subjects having selected a number of objects (s)he likes most from a prespecified set of n objects. In the model, persons and objects are represented in a low dimensional space defined by a set of ordinal variables with a prespecified number of categories; objects are represented as points and persons as intervals on each dimension. A conjunctive combination rule is assumed implying that a person selects an object if and only if the object is within the subject's interval on each dimension. An algorithm for fitting the model to a data set is presented and evaluated in a simulation study. The model is illustrated with data on preferences regarding holiday trips.

Type
Theory and Methods
Copyright
Copyright © 2004 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

The research reported in this paper was partially supported by the Research Council of K.U.Leuven (PDM/99/037).

The authors gratefully acknowledge the contribution of Veerle De Wael in running the study used in the application section and of Paul De Boeck, Luc Delbeke, and an anonymous referee for their helpful comments on a previous draft of the manuscript.

References

Abelson, R. P., & Levi, A. (1985). Decision making and decision theory. In Lindzey, G. & Aronson, E. (Eds.), Handbook of social psychology: Vol. 1. Theory and method 3rd ed., (pp. 231309). New York: Random HouseGoogle Scholar
Andrich, D. (1988). The application of an unfolding model of thepirt type to the measurement of attitude. Applied Psychological Measurement, 12, 3351CrossRefGoogle Scholar
Andrich, D. (1989). A probabilisticirt model for unfolding preference data. Applied Psychological Measurement, 13, 193216CrossRefGoogle Scholar
Andrich, D. (1995). Hyperbolic cosine latent trait models for unfolding direct responses and pairwise preferences. Applied Psychological Measurement, 19, 269290CrossRefGoogle Scholar
Andrich, D., & Luo, G. (1993). A hyperbolic cosine latent trait model for unfolding dichotomous single-stimulus responses. Applied Psychological Measurement, 17, 253276CrossRefGoogle Scholar
Arabie, P. (1991). Was Euclid an unnecessarily sophisticated psychologist?. Psychometrika, 56, 567587CrossRefGoogle Scholar
Arabie, P., & Hubert, L. (1992). Combinatorial data analysis. Annual Review of Psychology, 43, 169203CrossRefGoogle Scholar
Barbut, M., & Monjardet, B. (1970). Ordre et classification: Algèbre et combinatoire [Order and classification: Algebra and combinatorics]. Paris: HachetteGoogle Scholar
Beach, L. R. (1990). Image theory: Decision making in personal and organizational contexts. Chichester, England: WileyGoogle Scholar
Böckenholt, U., & Böckenholt, I. (1991). Constrained latent class analysis: Simultaneous classification and scaling of discrete choice data. Psychometrika, 56, 699716CrossRefGoogle Scholar
Booth, K. S., & Lueker, G. S. (1976). Testing for the consecutive ones property, interval graphs, and graph planarity usingPQ-tree algorithms. Journal of Computer and System Sciences, 13, 335379CrossRefGoogle Scholar
Borg, I., & Groenen, P. (1997). Modern multidimensional scaling: Theory and applications. New York: Springer-VerlagCrossRefGoogle Scholar
Carroll, J. D., & Chaturvedi, A. (1995). A general approach to clustering and multidimensional scaling of two-way, three-way, or higher-way data. In Luce, R. D., D'Zmura, M., Hoffman, D., Iverson, G. J. & Romney, A. K. (Eds.), Geometric representations of perceptual phenomena (pp. 295318). Mahwah, NJ: ErlbaumGoogle Scholar
Coombs, C. H. (1964). A theory of data. New York: WileyGoogle Scholar
Coombs, C. H., & Smith, J. E. (1973). On the detection of structure in attitudes and developmental processes. Psychological Review, 80, 344358CrossRefGoogle Scholar
Croon, M. (1993). Ordinal latent class analysis for single-peaked items. Kwantitatieve Methoden, 42, 127142Google Scholar
DeSarbo, W. S., & Hoffman, D. L. (1986). Simple and weighted unfolding treshold models for the spatial representation of binary choice data. Applied Psychological Measurement, 10, 247264CrossRefGoogle Scholar
Falmagne, J.-C., Koppen, M., Vilano, M., Doignon, J.-P., & Johannesen, L. (1990). Introduction to knowledge spaces: How to build, test and search them. Psychological Review, 97, 201224CrossRefGoogle Scholar
Feger, H. (1994). Structure analysis of co-occurence data. Aachen, Germany: ShakerGoogle Scholar
Ford, J. K., Schmitt, N., Schechtman, S. L., Hults, B. M., & Doherty, M. L. (1989). Process tracing methods: contributions, problems, and neglected research questions. Organizational Behavioral and Human Decision Processes, 43, 75117CrossRefGoogle Scholar
Formann, A. K. (1988). Latent class models for nonmonotone dichotomous items. Psychometrika, 53, 4562CrossRefGoogle Scholar
Formann, A. K. (1993). Latent class models for monotone and nonmonotone dichotomous items. Kwantitatieve Methoden, 42, 143160Google Scholar
Fulkerson, D. R., & Gross, O. A. (1965). Incidence matrices and interval graphs. Pacific Journal of Mathematics, 15, 835855CrossRefGoogle Scholar
Ganter, B., & Wille, R. (1996). Formale begriffsanalyse: Mathematische grundlagen [Formal concept analysis: Mathematical foundations]. Berlin, Germany: Springer-VerlagCrossRefGoogle Scholar
Gara, M. A., & Rosenberg, S. (1979). The identification of persons as supersets and subsets in free-response personality descriptions. Journal of Personality and Social Psychology, 37, 21612170CrossRefGoogle Scholar
Gati, I., & Tversky, A. (1982). Representations of qualitative and quantitative dimensions. Journal of Experimental Psychology, 8, 325340Google ScholarPubMed
Gelman, A., Leenen, I., Van Mechelen, I., De Boeck, P., & Poblome, J. (2001). Bridges between deterministic and probabilistic classification models. Submitted for publication.Google Scholar
Ghosh, S. P. (1972). File organization: the consecutive retrieval property. Communication of the Association for Computing Machinery, 9, 802808CrossRefGoogle Scholar
Goldmann, K. (1971). Some archaeological criteria for chronological seriation. In Hodson, F. R., Kendall, D. G. & Tautu, P. (Eds.), Mathematics in the Archaeological and Historical Sciences: Proceedings of the Anglo-Romanian Conference (pp. 202208). Edinburgh, Scotland: University PressGoogle Scholar
Haggard, E. A. (1958). Intraclass correlation and the analysis of variance. New York: DrydenGoogle Scholar
Hartigan, J. A. (1975). Clustering algorithms. New York: WileyGoogle Scholar
Hays, W. L. (1994). Statistics Fifth ed., New York: Harcourt BraceGoogle Scholar
Hoijtink, H. (1990). A latent trait model for choice data. Psychometrika, 55, 641656CrossRefGoogle Scholar
Hoijtink, H. (1991). The measurement of latent traits by proximity items. Applied Psychological Measurement, 15, 153169CrossRefGoogle Scholar
Hoijtink, H., & Molenaar, I. W. (1992). Testing fordif in a model with single peaked item characteristic curves: Theparella model. Psychometrika, 57, 383397CrossRefGoogle Scholar
Hovland, C. I., Harvey, O. J., & Sherif, M. (1957). Assimilation and contrast effects in reactions to communication and attitude change. Journal of Abnormal Social Psychology, 55, 244252CrossRefGoogle ScholarPubMed
Kendall, D. G. (1969). Incidence matrices, interval graphs and seriation in archaeology. Pacific Journal of Mathematics, 28, 565570CrossRefGoogle Scholar
Kirk, R. E. (1982). Experimental design: Procedures for the behavioral sciences 2nd ed., Belmont, CA: Brooks/ColeGoogle Scholar
Leenen, I., & Van Mechelen, I. (2001). An evaluation of two algorithms for hierarchical classes analysis. Journal of Classification, 18, 5780CrossRefGoogle Scholar
Leenen, I., Van Mechelen, I., & De Boeck, P. (1999). A generic disjunctive/conjunctive decomposition model forn-ary relations. Journal of Mathematical Psychology, 43, 102122CrossRefGoogle ScholarPubMed
Leenen, I., Van Mechelen, I., & De Boeck, P. (2001). Models for ordinal hierarchical classes analysis. Psychometrika, 66, 389404CrossRefGoogle Scholar
Leik, R. K., & Matthews, M. (1968). A scale for developmental processes. American Sociological Review, 33, 6275CrossRefGoogle ScholarPubMed
Luo, G. (1998). A general formulation of multidimensional unfolding models involving the latitude of acceptance. In Rizzi, A., Vichi, M. & Bock, H.-H. (Eds.), Advances in data science and classification (pp. 483488). Berlin, Germany: Springer-VerlagCrossRefGoogle Scholar
Ogilvie, J. R., & Schmitt, N. (1979). Situational influences on linear and nonlinear use of information. Organizational Behavior and Human Performance, 4, 337352Google Scholar
Roberts, J. S., & Laughlin, J. E. (1996). A unidimensional item response model for unfolding responses from a graded disagree-agree scale. Applied Psychological Measurement, 20, 231255CrossRefGoogle Scholar
Smits, D. J. M., De Boeck, P., Kuppens, P., & Van Mechelen, I. (2002). The structure of negative emotion scales: Generalization over contexts and comprehensiveness. European Journal of Personality, 16, 127141CrossRefGoogle Scholar
Tucker, A. C. (1972). A structure theorem for the consecutive 1's property. Journal of Combinatorial Theory, 12, 153162CrossRefGoogle Scholar
van Leeuwe, J. F. J., & Roskam, E. E. (1991). The conjunctive item response model: A probabilistic extension of the Coombs and Kao model. Methodika, 5, 1432Google Scholar
Van Schuur, W. H. (1993). Mudfold. Kwantitatieve Methoden, 42, 3954Google Scholar
Van Schuur, W. H. (1993). Unfolding models for pick any/n data: a summary and discussion. Kwantitatieve Methoden, 42, 161176Google Scholar
Vansteelandt, K., & Van Mechelen, I. (1998). Individual differences in situation-behavior profiles: A triple typology model. Journal of Personality and Social Psychology, 75, 751765CrossRefGoogle Scholar
Verhelst, N. D., & Verstralen, H. H. F. M. (1993). A stochastic unfolding model derived from the partial credit model. Kwantitatieve Methoden, 42, 7392Google Scholar
Westenberg, M. R. M., & Koele, P. (1992). Response modes, decision processes and decision outcomes. Acta Psychologica, 80, 169184CrossRefGoogle Scholar