Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-08T03:46:23.309Z Has data issue: false hasContentIssue false

Dynamic Factor Analysis of Nonstationary Multivariate Time Series

Published online by Cambridge University Press:  01 January 2025

Peter C. M. Molenaar*
Affiliation:
Department of Psychology, University of Amsterdam
Jan G. De Gooijer
Affiliation:
Department of Economic Statistics, University of Amsterdam
Bernhard Schmitz
Affiliation:
Max Planck Institute for Human Development and Education, Berlin
*
Requests for reprints should be sent to Peter C. M. Molenaar, Department of Psychology, University of Amsterdam, Roetersstraat 15, 1018 WB Amsterdam, THE NETHERLANDS.

Abstract

A dynamic factor model is proposed for the analysis of multivariate nonstationary time series in the time domain. The nonstationarity in the series is represented by a linear time dependent mean function. This mild form of nonstationarity is often relevant in analyzing socio-economic time series met in practice. Through the use of an extended version of Molenaar's stationary dynamic factor analysis method, the effect of nonstationarity on the latent factor series is incorporated in the dynamic nonstationary factor model (DNFM). It is shown that the estimation of the unknown parameters in this model can be easily carried out by reformulating the DNFM as a covariance structure model and adopting the ML algorithm proposed by Jöreskog. Furthermore, an empirical example is given to demonstrate the usefulness of the proposed DNFM and the analysis.

Type
Original Paper
Copyright
Copyright © 1992 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akaike, H. (1987). Factor analysis and AIC. Psychometrika, 52, 317332.CrossRefGoogle Scholar
Bartlett, M. S. (1948). Smoothing periodograms from time series with continuous spectra. Nature, 161, 686687.CrossRefGoogle Scholar
Bekker, P. A. (1989). Identification in restricted factor models and the evaluation of rank conditions. Journal of Econometrics, 41, 516.CrossRefGoogle Scholar
Bentler, P. M. (1980). Multivariate analysis with latent variables: Causal model. Annual Review of Psychology, 31, 419456.CrossRefGoogle Scholar
Bentler, P. M. (1985). Theory and implementation of EQS: A structural equations program, Los Angeles: BMDP Statistical Software.Google Scholar
Box, G. E. P., Jenkins, G. M. (1970). Time series ananlysis: Forecasting and control, San Francisco: Holden Day.Google Scholar
Box, G. E. P., Tiao, G. C. (1977). A canonical analysis of multiple time series. Biometrika, 64, 355365.CrossRefGoogle Scholar
Brillinger, D. R. (1975). Time series: Data analysis and theory, New York: Holt, Rinehart and Winston.Google Scholar
Buss, M. (1985). Die Vielseher. Fernseh-Zuschauerforschung in Deutschland. Theorie-Praxis-Ergebnisse [TV viewing behavior in Germany. Theory-Practice-Results], Frankfurt: Alfred Metzner Verlag.Google Scholar
Colgan, P. W. (1978). Quantitative ethology, New York: Wiley.Google Scholar
Cronbach, L. J., Glaser, G. C., Nanda, H., Rajarathan, H. (1972). Dependability of behavioral measurements: Theory of generalizability for scores and profiles, New York: Wiley.Google Scholar
Dolan, C., Molenaar, P. C. M., Boomsma, D. I. (1990). Simultaneous genetic analysis of longitudinal means and covariance structure using the simplex model. Behavior Genetics, 19, 5162.CrossRefGoogle Scholar
Engle, R. F., Watson, M. W. (1981). A one factor multivariate time series model of metropolitan wage rates. Journal of the American Statistical Association, 76, 774781.CrossRefGoogle Scholar
Geweke, J. F. (1977). The dynamic factor analysis of economic time series models. In Aigner, D. J., Goldberger, A. S. (Eds.), Latent variables in socio-economic models (pp. 365383). Amsterdam: North-Holland.Google Scholar
Glover, K., Willems, J. C. (1974). Parametrizations of linear dynamical systems: canonical identifiability. IEEE Transactions on Automatic Control, AC-19, 640645.CrossRefGoogle Scholar
Gottman, J. M., Ringland, J. T. (1981). The analysis of dominance and bidirectionality in social development. Child Development, 52, 393412.CrossRefGoogle Scholar
Gourieroux, C., Monfort, A., Trognon, A. (1984). Pseudo maximum likelihood methods: Theory. Econometrica, 17, 287304.Google Scholar
Granger, C. W. J., Morris, M. J. (1976). Time series modelling and interpretation. Journal of the Royal Statistical Society, Series A, 139, 246257.CrossRefGoogle Scholar
Gregson, R. A. M. (1983). Time series in psychology, Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
Hannan, E. J. (1970). Multiple time series, New York: Wiley.CrossRefGoogle Scholar
Holtzman, W. H. (1967). Statistical models for the study of change in the single case. In Harris, C. W. (Eds.), Problems in measuring change 2nd ed., (pp. 199211). Madison: The University of Wisconsin Press.Google Scholar
Jöreskog, K. G. (1976). Some contributions to maximum likelihood factor analysis. Psychometrika, 34, 183202.CrossRefGoogle Scholar
Jöreskog, K. G. (1979). Statistical estimation of structural models in longitudinal-developmental investigations. In Nesselroade, J. R., Baltes, P. B. (Eds.), Longitudinal research in the study of behavior and development (pp. 303351). New York: Academic Press.Google Scholar
Jöreskog, K. J., Sörbom, D. (1988). LISREL 7, Chicago: SPSS.Google Scholar
Kashyap, R. L., Rao, A. R. (1976). Dynamics stochastic models from empirical data, New York: Academic Press.Google Scholar
MacCallum, R., Ashby, F. G. (1986). Relationships between linear systems theory and covariance structure modeling. Journal of Mathematical Psychology, 30, 127.CrossRefGoogle Scholar
McDonald, D. G. (1986). Generational aspects of television coviewing. Journal of Broadcasting & Electronic Media, 30, 7585.CrossRefGoogle Scholar
McFarland, D. J. (1971). Feedback mechanisms in animal behavior, London: Academic Press.Google Scholar
Molenaar, P. C. M. (1985). A dynamic factor model for the analysis of multivariate time series. Psychometrika, 50, 181202.CrossRefGoogle Scholar
Molenaar, P. C. M. (1987). Dynamic assessment and adaptive optimization of the psychotherapeutic process. Behavioral Assessment, 9, 389416.Google Scholar
Molenaar, P. C. M. (1989). Aspects of dynamic factor analysis. Proceedings of the Symposium on the Analysis of Statistical Information (pp. 183199). Tokyo: The Institute of Statistical Mathematics.Google Scholar
Molenaar, P. C. M., De Gooijer, J. G. (1988). On the identification of the latent covariance structure in dynamic nonstationary factory models. In Jansen, M. G. H., Van Schuur, W. H. (Eds.), The many faces of multivariate analysis (pp. 196209). Groningen: RION.Google Scholar
Molenaar, P. C. M., Roelofs, J. W. (1987). The analysis of multiple habituation profiles of single trial evoked potentials. Biological Psychology, 24, 121.CrossRefGoogle ScholarPubMed
Otter, P. W. (1986). Dynamic structural systems under indirect observation: Identifiability and estimation aspects from a system theoretic perspective. Psychometrika, 51, 415428.CrossRefGoogle Scholar
Peña, D., Box, G. E. P. (1987). Identifying a simplifying structure in time series. Journal of the American Statistical Association, 82, 836843.Google Scholar
Reinsel, G. C. (1983). Some results on multivariate autoregressive index models. Biometrika, 70, 145156.CrossRefGoogle Scholar
Schmitz, B. (1989). Einführung in die Zeitreihenanalyse: Modelle, Software, Anwendungen [Introduction to time series analysis: Models, software, and applications], Bern: Huber.Google Scholar
Schmitz, B. (1990). Univariate and multivariate time-series models: The analysis of intraindividual variability and intraindividual relationships. In Eye, A. (Eds.), Statistical methods in longitudinal research, Vol. II: Time series and categorical longitudinal data (pp. 351386). New York: Academic Press.Google Scholar
Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6, 461464.CrossRefGoogle Scholar
Soong, R. (1988). The statistical reliability of people meter ratings. Journal of Advertisting Research, February/March, 50–56.Google Scholar
Sörbom, D. (1976). A statistical model for the measurement of change in true scores. In de Gruijter, D. N. M., van der Kamp, L. J. T. (Eds.), Advances in psychological and educational measurement (pp. 159169). New York: Wiley.Google Scholar
Thatcher, R. W., Krause, P. J., Hrybyk, M. (1986). Cortico-cortical association and EEG coherence: A two-compartmental model. Electroencephalography and Clinical Neurophysiology, 64, 123143.CrossRefGoogle ScholarPubMed
Tiao, G. C., Tsay, R. S. (1989). Model specification in multivariate time series. Journal of the Royal Statistical Society, Series B, 51, 157213.CrossRefGoogle Scholar
Voeten, M. J. M. (1985). Sequential analysis of teacher-student interaction. Unpublished doctoral dissertation, Catholic University of Nijmegen.Google Scholar
Winfree, A. T. (1980). The geometry of biological time, New York: Springer Verlag.CrossRefGoogle Scholar